a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
Cho các số dương x, y thỏa mãn x + y = 1
Tìm GTNN của \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)
Cho các số dương x, y thỏa mãn x + y = 1 . Tìm GTNN của P = \(\left(2x+\dfrac{1}{x}\right)^2+\left(2x+\dfrac{1}{y}\right)^2\)
Cho các số dương x và y thỏa mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\). Tìm GTNN của
a) A = xy
b) B = x + y
các số dương x,y thỏa mãn x + y = 1. Tìm GTNN:
P = \(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}-4xy\)
Tìm các cặp số nguyên (x;y) thỏa mãn: x^4-y^4=3y^2 1
Bài 1: Cho x+y=1 (x>0,y>0). Tìm giá trị nhỏ nhất(GTNN) của:
a. \(\dfrac{1}{x}\)+\(\dfrac{1}{y}\)
b. \(\dfrac{a^2}{x}\)+\(\dfrac{b^2}{x}\)
c. (x+\(\dfrac{1}{x}\))\(^2\) +(y+\(\dfrac{1}{y}\))\(^2\)
Bài 2: Tìm GTNN của: x\(^2\)+y\(^2\)+\(\dfrac{2}{xy}\) với x,y cùng dấu
Bài 3: Cho các số dương x,y thỏa mãn: \(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\)=\(\dfrac{1}{2}\). Tìm GTNN của:
a. A=xy
b. B=x+y
giúp với ạ
Bài 1:Rút gọn biểu thức
a)A=(x+y)2 - (x-y)2
b)B=(x+y)2 - 2(x+y)(x-y)+(x-y)2
c)(x2 + x +1)(x2 -x+1)(x2 -1)
d)(a+b-c)2 + (a-b+c)2 - 2(b-c)2
Bài 2: Cho các số thực x,y thỏa mãn điều kiện x+y=3; x2 +y2 =17. Tính giá trị biểu thức x3 +y3
tìm hai số nguyên dương x,y thỏa mãn (x+y)^4=40x+1