1) Giải các PT sau:
a)\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
b)\(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\)
c)\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)
d)\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
e)\(2x+3=2\sqrt{x+1}+\sqrt{2x+1}\)
f)\(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\)
Bài 1. tìm điều kiện xác định và tính giá trị các biểu thức sau :
1) A= \(\frac{\sqrt{x}-1}{\sqrt{x}+1}khi\) x =\(4-2\sqrt{3}\)
2) B= \(\frac{\sqrt{x}}{\sqrt{x}-\sqrt{2}}\) khi x =\(5+2\sqrt{6}\)
Bài 2. Tìm điều kiện xác định và rút gọn các biểu thức sau :
1) A= \(\frac{x+12}{x-4}+\frac{1}{\sqrt{x}+2}-\frac{4}{\sqrt{x}-2}\)
2) B = \(\frac{3\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{10\sqrt{x}}{x-4}\)
3) C = \(\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+5}{x-4}\right).\frac{x-4}{\sqrt{x}}\)
1. giải các phương trình :
a) $\frac{\sqrt[2]{2x-3}}{ \sqrt[2]{x-1}}$ = 2
b) x-5 $\sqrt[2]{x-2}$ = -2
2. chứng minh bất đẳng thức :
a) $\frac{a^{2}+3}{ \sqrt[n]{a^{2}+2}}$>2
b) $\sqrt[2]{a}$ + $\sqrt[2]{b}$ $\leq$ $\frac{a}{\sqrt[2]{b}}$ + $\frac{b}{\sqrt[2]{a}}$
với a >0; b>0
giải các phương trình
a \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)
b \(\sqrt{3x^2-4x}=2x-3\)
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}=2\)
cho biểu thức A = \(\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
a) tìm điều kiện của x để biểu thức A có nghĩa
b) rút gọn biểu thức A
c) tính giá trị của A khi x = \(4-2\sqrt{3}\)
1.Rút gọn:
a.\(2\sqrt{3x}-\sqrt{48x}+\sqrt{108x}+\sqrt{3x}\)
b.\(2\sqrt{25xy}+\sqrt{5}\sqrt{45x^3y^3}-3y\sqrt{16x^3y}\)
c.\(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{12}{3-\sqrt{3}}\)
d.\(\frac{1}{\sqrt[]{3}-\sqrt{2}}-\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
1.Rút gọn:
a.\(2\sqrt{3x}-\sqrt{48x}+\sqrt{108x}+\sqrt{3x}\)
b.\(2\sqrt{25xy}+\sqrt{5}\sqrt{45x^3y^3}-3y\sqrt{16x^3y}\)
c.\(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{12}{3-\sqrt{13}}\)
d.\(\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{3}+\sqrt{5}}-\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
Bài 1 : Giải pt
a) 2\(\sqrt{2x}\) - 5\(\sqrt{8x}\) + 7\(\sqrt{18x}\) = 28
b) \(\sqrt{4x-20}\) + \(\sqrt{x-5}\) - \(\dfrac{1}{3}\)\(\sqrt{9x-45}\) = 4
c) \(\sqrt{\dfrac{3x-2}{x+1}}\) = 2
d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}\) = 2
Cho biểu thức \(E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}-3}\)
a) rút gọn biểu thức
b) chứng minh \(E\le\frac{2}{3}\)