Rút gọn các biểu thức sau:
9, A = \(\sqrt{4+\sqrt{15}}-\sqrt{7-3\sqrt{5}}\)
10, A = \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
11, A = \(\text{}\text{}\text{}\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
12, A = \(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)
13, A = \(\sqrt{9-4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
1 .
a)\(A=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
b)\(B=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
c)C=\(\frac{2}{\sqrt[3]{4}+\sqrt[3]{2}+2}\)
2 .
a)\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b)\(B=\frac{\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
c)C=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7}+4\sqrt{3}}}}\)
d)D=(\(\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
1)Rút gọn biểu thức:
a) \(\dfrac{10}{9}\left(\sqrt{0,8}+\sqrt{ }1,25\right)\)
b) \(4\sqrt{\dfrac{2}{9}}+\sqrt{2}+\sqrt{\dfrac{1}{18}}\)
c) \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+1}\)
d) \(6\sqrt{a}+\dfrac{2}{3}\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{9}{a}}+7\) với a >0
rút gọn các biểu thức:
a,\(6\sqrt{a}+\dfrac{2}{3}\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{9}{a}}+\sqrt{7}vớia>0\)
b,\(5a\sqrt{25ab^3}\sqrt{3}\sqrt{12a^3b^3}+9ab\sqrt{9ab}-5b\sqrt{81a^3b}vớia,b>0\)
c,\(\sqrt{\dfrac{a}{b}}+\sqrt{ab}-\dfrac{a}{b}\sqrt{\dfrac{b}{a}}vớia,b>0\)
d,\(11\sqrt{5a}-\sqrt{125a}+\sqrt{20a}-4\sqrt{45a}+9\sqrt{a}vớia>0\)
1 giải phương trình
x - 7\(\sqrt{x-3}\) + 9 = 0
2 chỉ ra chỗ sai trong các biến đổi sau
x\(\sqrt[]{\dfrac{2}{5}}\) = \(\sqrt[]{\dfrac{2x^2}{5}}\)
ab\(\sqrt[]{\dfrac{a}{b}}\)= a\(\sqrt{\dfrac{ab^2}{b}^{ }}\)= a\(\sqrt{ab}\)
3 chứng minh giá trị các biểu thức sau là nguyên
A = \(\sqrt{3-2\sqrt{2}}\) - \(\sqrt{3+3\sqrt{2}}\)
B = 2\(\sqrt{9-4\sqrt{5}}\) - \(\sqrt{21-4\sqrt{5}}\)
4 rút gọn biểu thức sau
a,\(\dfrac{10}{9}\)*(\(\sqrt{0,8}+\sqrt{1,25}\) )
b,4\(\sqrt{\dfrac{2}{9}}+\sqrt{2}+\sqrt{\dfrac{1}{18}}\)
c,\(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+1}\)
d, 6\(\sqrt{a}+\dfrac{2}{3}\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{9}{a}}+\sqrt{7}\)
e, \(11\sqrt{5a}-\sqrt{125a}+\sqrt{20a}-4\sqrt{45a}+9\sqrt{a}\)
f, \(5a\sqrt{25ab^3}-\sqrt{3}\sqrt{12a^3b^3}+9ab\sqrt{9ab}-5b\sqrt{81a^3b}\)
g, \(\sqrt{\dfrac{a}{b}}+\sqrt{ab}-\dfrac{a}{b}\sqrt{\dfrac{b}{a}}\)
1. A=\(\sqrt{4+\sqrt{ }7}\)+ \(\sqrt{4-\sqrt{ }7}\) 2. B=\(\dfrac{\sqrt{\sqrt{7-\sqrt{3}}}-\sqrt{\sqrt{7+\sqrt{3}}}}{\sqrt{\sqrt{7}-\sqrt{2}}}\) 3. C=\(\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\) 4. D=\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\) 5. so sánh Cho A=\(\sqrt{11+\sqrt{96}}\) B=\(\dfrac{2\sqrt{2}}{\sqrt{1+\sqrt{2-\sqrt{3}}}}\) so sánh A và B
1. A=\(\sqrt{4+\sqrt{7}}\) +\(\sqrt{4-\sqrt{7}}\)
2. B= \(\dfrac{\sqrt{\sqrt{7-\sqrt{3}}-\sqrt{7+\sqrt{3}}}}{\sqrt{7-\sqrt{2}}}\)
3. C=\(\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)
4. D=\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
5 E=\(\dfrac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\) +\(\dfrac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
6. so sánh Cho A=\(\sqrt{11+\sqrt{96}}\)
B= \(\dfrac{2\sqrt{2}}{1+\sqrt{2-\sqrt{3}}}\) so sánh A và b
Rút gọn :
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
b) \(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
rút gọn :
a ) \(\sqrt{2}.\sqrt{7-3\sqrt{5}}\)
b) \(\sqrt{\dfrac{59}{25}+\dfrac{6}{5}\sqrt{2}}\)
c) \(2.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{4+\sqrt{6-2\sqrt{5}}}\)
d) \(\left(7+\sqrt{14}\right).\sqrt{9-2\sqrt{14}}\)