Tam giác ABC vuông tại A, biết AB = 3cm, BC = 5cm. Đường phân giác ngoài của góc B cắt AC tại N. Khi đó AN = ...
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
tam giác abc có ab<ac nội tiếp (o) đường phân giác ad cắt (o) tại i(d thuộc bc)
a chứng minh oi vuông góc với bc và ib=ic
b,bi^2=ai.id
cho tam giác ABC nt đtron kẻ đcao AH kẻ BE vuông góc với AO kẻ HE cắt AC tại K
a) chứng minh HE vuông góc AC
b) gọi M là trugn điểm BC chứng minh tam giác HME cân tại M giúp mình câu b
Bài 5 : (3 điểm ) Cho tam giác ABC vuông tại A có AC = 12 cm và BC = 13 cm Đường cao AH b/Kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . Chứng minh : HB.HC=DA.DB+EA.EC
Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC đến (O) (B, C là các tiếp điểm) . a) Chứng minh: OA vuông góc với BC tại H. b) Vẽ đường thẳng vuông góc với OB tại O cắt cạnh AC tại E. Chứng minh: ∆OAE là tam giác cân. c) Trên tia đối của tia BC lấy điểm Q. Vẽ hai tiếp tuyến QM, QN đến (O) (M, N là tiếp tuyến). Chứng minh: 3 điểm A, M, N thẳng hàng