Giải pt sau :
1/ (2sinx-1)(2cos2x+2sinx+1)=3-4cos2 x
2/ \(\sqrt{3}cot\left(\frac{\pi}{4}-x\right)+1=0\)
3/ (cos\(\frac{x}{4}-3sinx\)) sinx + (\(\left(1+sin\frac{x}{4}-3cosx\right)cosx=0\)
4/ \(sin2x-cos2x+3sinx-cosx-1=0\)
giai cac pt
a) \(sin^3\left(x+\frac{\pi}{4}\right)=\sqrt{2}sinx\)
b) \(cos^3x-sin^3x=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
c) \(\frac{1-tanx}{1+tanx}=1+2sinx\)
d) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)
Tìm các nghiệm x \(\in\left[0;2019\pi\right]\)để pt
\(Sin^2x-3sinx+1=0\)
1. Sin3x+cos3x=0
2. Sin(x-π/3)+2cos(x-π/6)=0
bài 1: a) \(sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(x-\dfrac{\pi}{3}\right)=0\)
b) \(sin\left(2x-\dfrac{\pi}{3}\right)-cos\left(x+\dfrac{\pi}{3}\right)=0\)
c) \(sin\left(2x+\dfrac{\pi}{3}\right)+cos\left(x-\dfrac{\pi}{6}\right)=0\)
1)giải pt a)√2 cos2x-1=0
b) sinx =cos3x
c) cos (x+π/3) +sin(3x+π/4)=0
d)tan 2x = cot (x+π/4)
e) sin x = √3 cos x
f) tan^2(π/3-2x)-3=0
Giải các phương trình lượng giác sau:
1) sin3x - cos3x + cos2x = 0
2) sin3x + cos3x - 2(sin5x + cos5x) = 0
3) 3sinx + 2 cosx - 2 - 3tanx = 0
giai pt
a) \(cos^3x-sin^3x=\sqrt{2}cos\left(x-\frac{\pi}{4}\right)\)
b) \(\frac{1-tanx}{1+tanx}=1+2sinx\)
c) \(\left(1+tanx\right)sin^2x=3sinx\left(cosx-sinx\right)+3\)
\(2\sin^2\left(5\pi+1\right)-\left(\sqrt{3}+1\right)\sin2\left(\frac{\pi}{2}-x\right)+\sqrt{3}\sin^2\left(\frac{9\pi}{2}+x\right)=0\)