\(1440:\left[41-\left(2x-5\right)\right]=2^4.3\)
\(\Rightarrow1440:\left[41-\left(2x-5\right)\right]=48\)
\(\Rightarrow41-\left(2x-5\right)=30\)
\(\Rightarrow2x-5=11\)
\(\Rightarrow2x=16\)
\(\Rightarrow x=8\)
Vậy \(x=8\)
\(1440:\left[41-\left(2x-5\right)\right]=2^4\cdot3\)
\(1440:\left[41-\left(2x-5\right)\right]=48\)
\(41-\left(2x-5\right)=\frac{1440}{48}=30\)
\(2x-5=41-30=11\)
\(2x=16\)
\(x=8\)
t) \(1440:\left[41-\left(2x-5\right)\right]=2^4.3\)
\(1440:\left[41-\left(2x-5\right)\right]=16.3\)
\(1440:\left[41-\left(2x-5\right)\right]=48\)
\(41-\left(2x-5\right)=1440:48\)
\(41-\left(2x-5\right)=30\)
\(2x-5=41-30\)
\(2x-5=11\)
\(2x\) \(=11+5\)
\(2x\) \(=16\)
\(x=16:2\)
\(x=8\)
Vậy \(x=8\)
1440 :[ 41 - ( 2x - 5)] = 2^4 . 3
= 1440 :[41-(2x . 5)] = 48
= 41 - (2x - 5) = 1440 : 48
= 41 - (2x - 5) = 30
= 2x - 5 = 41 - 30
= 2x - 5 = 11
= 2x = 11 + 5
= 2x = 16
= x = 16 : 2
= x = 8
=> x = 8