(Bài 8)*:\(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\)
\(\Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\)
\(\Leftrightarrow\left(x^2-7x-4x+28\right)\left(x^2-6x-5x+30\right)=1680\)
\(\Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\)
Đặt: \(t=x^2-11x+28\)
\(\Leftrightarrow t\left(t+2\right)=1680\)
\(\Leftrightarrow t^2+2t+1=1680+1\)( cả 2 vế cộng cho 1)
\(\Leftrightarrow\left(t+1\right)^2=1681=41^2\)
\(\Leftrightarrow t+1=41\)
\(\Leftrightarrow t=40\)
\(\Leftrightarrow x^2-11x+28=40\)
\(\Leftrightarrow x^2-11x+28-40=x^2-11x-12=0\)
\(\Leftrightarrow x^2-x+12x-12=0\)
\(\Leftrightarrow x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x-1=0\\x+12=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=1\\x=-12\end{matrix}\right.\)
Vậy: Tập nghiệm của phương trình là: \(S=\left\{-12;1\right\}\)
1 <=> (x+2)(x+4)(x-4+5)=0
<=> \(\left[\begin{matrix}x=-2\\x=-4\\x=1\end{matrix}\right.\)
2. <=> x2(x2+x-12)=0
<=> \(\left[\begin{matrix}x=0\\x=-4\\x=3\end{matrix}\right.\)
3. (x4-x)-3x2(x-1) =0
<=> x(x-1)(x2+x+1)-3x2(x-1)=0
<=> x(x-1)(x2+x+1-3x)=0
<=> \(\left[\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4. <=> x2(x-4)-(x-4) =0
<=> (x-4)(x2-1)=0
<=> \(\left[\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)
. <=> (x+2)(x-3)(17x2-17x+8-x2+17x-33)=0
<=> \(\left[\begin{matrix}x=-2\\x=3\\x=-\frac{5}{4}\\x=\frac{5}{4}\end{matrix}\right.\)
6. <=> \(\left[\begin{matrix}4x^2-3x-18=4x^2+3x\\4x^2-3x-18=-4x^2-3x\end{matrix}\right.\)
<=> \(\left[\begin{matrix}x=-3\\x=-\frac{3}{2}\\x=\frac{3}{2}\end{matrix}\right.\)
7. <=> x(x2-12x+5)=0
<=> \(\left[\begin{matrix}x=0\\x=\frac{5}{2}\\x=\frac{1}{2}\end{matrix}\right.\)