Ôn tập chương III

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Minh Thư

A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

CMR: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)

Nguyễn Lưu Vũ Quang
11 tháng 5 2017 lúc 10:17

Ta có: \(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}\)

\(\dfrac{1}{4^2}>\dfrac{1}{4\cdot5}\)

..................

\(\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}\)

\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{9\cdot10}\)

\(\Rightarrow\) \(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow\) \(A>\dfrac{1}{2}-\dfrac{1}{10}\)

\(\Rightarrow\) \(A>\dfrac{5}{10}-\dfrac{1}{10}\)

\(\Rightarrow\) \(A>\dfrac{2}{5}\) (1)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}\)

...................

\(\dfrac{1}{9^2}< \dfrac{1}{8\cdot9}\)

\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}\)

\(\Rightarrow\) \(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(\Rightarrow\) \(A< 1-\dfrac{1}{9}\)

\(\Rightarrow\) \(A< \dfrac{9}{9}-\dfrac{1}{9}\)

\(\Rightarrow\) \(A< \dfrac{8}{9}\) (2)

Từ (1) và (2) ta được: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)

Vậy \(\dfrac{2}{5}< A< \dfrac{8}{9}\).

Nguyễn Lưu Vũ Quang
11 tháng 5 2017 lúc 10:19

Mà đề phần kết luận sai nhé, nếu \(\dfrac{1}{n^2}\) thì A đâu lớn hơn \(\dfrac{2}{5}\), phải thay \(\dfrac{1}{n^2}\) thành \(\dfrac{1}{9^2}\) nha


Các câu hỏi tương tự
Hạ Quỳnh
Xem chi tiết
Trần Thu Hiền
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Nguyễn ngọc Khế Xanh
Xem chi tiết
Trần Thu Hiền
Xem chi tiết
Cô Bé Lạnh Lùng
Xem chi tiết
Nguyễn Trâm
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
Yuuki Asuna
Xem chi tiết