Ta có: \(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}\)
\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}\)
\(\dfrac{1}{4^2}>\dfrac{1}{4\cdot5}\)
..................
\(\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}\)
\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{9\cdot10}\)
\(\Rightarrow\) \(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow\) \(A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow\) \(A>\dfrac{5}{10}-\dfrac{1}{10}\)
\(\Rightarrow\) \(A>\dfrac{2}{5}\) (1)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}\)
...................
\(\dfrac{1}{9^2}< \dfrac{1}{8\cdot9}\)
\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}\)
\(\Rightarrow\) \(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow\) \(A< 1-\dfrac{1}{9}\)
\(\Rightarrow\) \(A< \dfrac{9}{9}-\dfrac{1}{9}\)
\(\Rightarrow\) \(A< \dfrac{8}{9}\) (2)
Từ (1) và (2) ta được: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
Vậy \(\dfrac{2}{5}< A< \dfrac{8}{9}\).
Mà đề phần kết luận sai nhé, nếu \(\dfrac{1}{n^2}\) thì A đâu lớn hơn \(\dfrac{2}{5}\), phải thay \(\dfrac{1}{n^2}\) thành \(\dfrac{1}{9^2}\) nha