Đối với dạng này ta dùng công thức \(a\cdot\left(a+1\right)=\dfrac{1}{3}\left[a\cdot\left(a+1\right)\cdot\left(a+2\right)-\left(a-1\right)\cdot a\cdot\left(a+1\right)\right]\)
Ta có:
\(1\cdot2=\dfrac{1}{3}\left(1\cdot2\cdot3-0\cdot1\cdot2\right)\)
\(2\cdot3=\dfrac{1}{3}\left(2\cdot3\cdot4-1\cdot2\cdot3\right)\)
$\cdots$
\(2016\cdot2017=\dfrac{1}{3}\left(2016\cdot2017\cdot2018-2015\cdot2016\cdot2017\right)\)
Cộng lại ta có: \(1\cdot 2 +2\cdot 3 +3 \cdot 4 +\cdots +2016\cdot 2017=\dfrac{1}{3} (2016\cdot 2017 \cdot 2018-0\cdot 1 \cdot 2)=\dfrac{1}{3}\cdot 2016\cdot 2017 \cdot 2018 \)
Thay vào $A$ thu được $A=672.$