Cho tam giác MNP có MN = MP; I là trung điểm của NP. Chứng minh rằng: tam giác MNI và tam giác MPI bằng nhau
Cho tam giác MNP có MN=MP, I là trung điểm của NP
a) CMR: tam giác MNI và tam giác MPI bằng nhau
b) CMR: MI là tia phân giác của MNP
c) CMR: MI là đường trung trực của NP
d) Lấy điểm E, F lần lượt trên cạnh MN, MP sao cho NE=PF, CMR: tam giác MEI và tam giác MFI bằng nhau
Cho tam giác MNP vuông tại N (MN > NP). Tia phân giác góc M cắt NP ở O. Kẻ OH vuông góc với MP. Trên tia NP lấy điểm E sao cho MN = NE. Đường thẳng vuông góc với NE cắt tia OH ở F.
a° là số đo góc OMF. Tính E = 3a
Cho tam giác ABC vuông tại A. M là điểm bất kì thuộc cạnh BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia IM lấy điểm N sao cho MI = IN.
Chứng minh:
a) Góc BAM bằng góc AMI.
b) Tam giác MIC= tam giác NIC
c) Lấy K thuộc cạnh AB sao cho AK = MI. Chứng minh MK//AC.
d) AM=KI
Bài 4: (3 điểm) Cho ∆MNP, lấy O là trung điểm cạnh NP. Trên tia đối của tia OM lấy điểm E sao cho OM=OE. Chứng minh rằng:
a)∆MNO=∆EPO
b)MN // EP
c) Kẻ MH vuông góc với NP, EK vuông góc với NP (H, K thuộc NP). Chứng minh NK=PH.
d)MP // NE
Cho tam giác ABC vuông tại A, có AB= 9cm, BC= 15cm. a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC. b) Trên tia đối cua tia AB lấy điểm D sao cho AB=AD. CMR : BC=DC c) Gọi E,F lần lượt là trung điểm cạnh CD,BC; gọi I là giao điểm của BE và AC. Chứng minh D,I,F thẳng hàng.
Bài 1: Cho tam giác ABC. Trên tia đối của AB lấy D sao cho AD=AB. Trên tia đối của AC lấy E sao cho AE=AC.
a, CMR: BE = CD
b, CM: BE//CD
c, Gọi M là trung điểm của BE và N là trung điểm của CD. CM: M, A, N thẳng hàng
( mn giải nhanh giúp mik với, mik đang cần gấp, mik cảm ơn nhiều!!)
Cho tam giác abc vuông tại a ( AB<AC) M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho : MD=MC . C/m : a) tam giác AMD = tam giác BMC b)BD vuông góc với AB c) Gọi N là trung điểm của BC , trên tia đối của tia NA lấy điểm E sao cho NE = NA chứng minh D,B,E thẳng hàng