\(A=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{16}\left(1+2+3+....+16\right)\)
\(A=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+....+\frac{1}{16}\cdot\frac{16.17}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+.....+\frac{17}{2}\)
\(A=\frac{\left(2+3+4+....+17\right)}{2}=\frac{\left(2+17\right).\left(17-2+1\right):2}{2}=\frac{152}{2}=76\)
Ta có: \(A = 1+{1+2\over 2} + {1+2+3\over 3} +...+{1+2+...+ 16\over 16}\)
Xét: \(S_n = 1+2+3+...+n =\frac{n(n+1)}{n} (n \in N^*)\)
=> \({S_n\over n} = {(n+1)\over 2}\)
Thay vào biểu thức A ta có:
\(A=1 + {3\over 2} + {4\over 2} + ... + {17\over 2}\)
\(A={(2+3+4+...+17)\over 2}\)
\(A={(17+2)[(17-2+1):2]\over 2} = {152\over2}=76\)