\(a,15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)
\(b,\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)
\(c,\frac{-7}{9}.\frac{4}{11}+\frac{-7}{9}.\frac{7}{11}+5\frac{7}{9}\)
\(d,50\%.1\frac{1}{3}.10.\frac{7}{35}.0,75\)
\(e,\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{40.43}\)
\(a,15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\\ =15\frac{3}{13}-3\frac{4}{7}-8\frac{3}{13}\\ =7\frac{3}{13}-3\frac{4}{7}\\ =\frac{94}{13}-\frac{25}{7}\\ =\frac{94\cdot7-25\cdot13}{13\cdot7}\\ =\frac{333}{91}\)
\(b,\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\\ =7\frac{4}{9}-3\frac{4}{9}+4\frac{7}{11}\\ =4\frac{4}{9}+4\frac{7}{11}\\ =\frac{40}{9}+\frac{51}{11}\\ =\frac{40\cdot11+51\cdot9}{11\cdot9}\\ =\frac{899}{99}\)
\(c,=-\frac{7}{9}\cdot\left(\frac{4}{11}+\frac{7}{11}\right)+\frac{52}{9}\\ =-\frac{7}{9}\cdot1+\frac{52}{9}\\ =\frac{-7+52}{9}\\ =\frac{45}{9}=5\)
\(d,=\frac{50}{100}\cdot\frac{4}{3}\cdot10\cdot\frac{7}{35}\cdot\frac{75}{100}\\ =\frac{50\cdot2\cdot2\cdot2\cdot5\cdot7\cdot25\cdot3}{50\cdot2\cdot3\cdot5\cdot7\cdot25\cdot2\cdot2}=1\)
\(e,=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\\ =1-\frac{1}{43}\\ =\frac{42}{43}\)
a) Ta có: \(15\frac{3}{13}-\left(3\frac{4}{7}+8\frac{3}{13}\right)\)
\(=15+\frac{3}{13}-3-\frac{4}{7}-8-\frac{3}{13}\)
\(=4-\frac{4}{7}=\frac{24}{7}\)
b) Ta có: \(\left(7\frac{4}{9}+4\frac{7}{11}\right)-3\frac{4}{9}\)
\(=7+\frac{4}{9}+4+\frac{7}{11}-3-\frac{4}{9}\)
\(=8+\frac{7}{11}=\frac{95}{11}\)
c) Ta có: \(\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+5\frac{7}{9}\)
\(=\frac{-7}{9}\cdot\frac{4}{11}+\frac{-7}{9}\cdot\frac{7}{11}+\frac{-7}{9}\cdot\frac{-52}{7}\)
\(=\frac{-7}{9}\cdot\left(\frac{4}{11}+\frac{7}{11}-\frac{52}{7}\right)\)
\(=\frac{-7}{9}\cdot\frac{45}{-7}=5\)
d) Ta có: \(50\%\cdot1\frac{1}{3}\cdot10\cdot\frac{7}{35}\cdot0.75\)
\(=\frac{1}{2}\cdot\frac{4}{3}\cdot10\cdot\frac{7}{35}\cdot\frac{3}{4}\)
\(=5\cdot\frac{7}{35}=1\)
e) Ta có: \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}\)
\(=1-\frac{1}{43}=\frac{43}{43}-\frac{1}{43}\)
\(=\frac{42}{43}\)