theo công thức (n-1)n(n+1)=n\(^3\)-n
\(\Rightarrow\) n\(^3\)=n+(n-1)n(n-1)
Ta có :
\(A=1^3+2^3+.....+100^3\)
\(\Rightarrow1+2+1\cdot2\cdot3+3+2\cdot3\cdot4+100+99\cdot100\cdot101\)\(=\left(1+2+3+...+100\right)+\left(1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\right)\) =5050+101989800
=101994850