\(A=1.2.3+2.3.4+...+99.100.101\)
\(\Rightarrow4A=1.2.3.4+2.3.4\left(5-1\right)+...+99.100.101.\left(102-98\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+...+99.100.101.102-98.99.100.101\)
\(=99.100.101.102\)
\(\Rightarrow A=\dfrac{99.100.101.102}{4}=99.25.101.102\)
Vậy...