a)
\(x(x+1)-(x+2)(x-3)=7\)
\(\Leftrightarrow (x^2+x)-(x^2-x-6)=7\)
\(\Leftrightarrow 2x+6=7\Leftrightarrow 2x=1\Leftrightarrow x=\frac{1}{2}\)
b) ĐK: \(x\neq \pm 1\)
\(\frac{x-3}{x+1}=\frac{x^2}{x^2-1}\Leftrightarrow \frac{(x-3)(x-1)}{(x+1)(x-1)}=\frac{x^2}{x^2-1}\)
\(\Leftrightarrow \frac{x^2-4x+3}{x^2-1}=\frac{x^2}{x^2-1}\)
\(\Rightarrow x^2-4x+3=x^2\)
\(\Leftrightarrow -4x+3=0\Leftrightarrow x=\frac{3}{4}\) (t/m)
c) ĐK: \(x\neq -2; x\neq 3\)
\(\frac{1}{x+2}-\frac{4}{x-3}=\frac{10}{(x+2)(x-3)}\)
\(\Leftrightarrow \frac{x-3-4(x+2)}{(x+2)(x-3)}=\frac{10}{(x+2)(x-3)}\)
\(\Rightarrow x-3-4(x+2)=10\)
\(\Leftrightarrow -3x-21=0\Leftrightarrow x=-7\) (t/m)
d) ĐK: \(x\neq \pm 2\)
\(\frac{1}{x-2}+\frac{x-3}{x+2}=1\)
\(\Leftrightarrow \frac{x+2+(x-3)(x-2)}{(x-2)(x+2)}=1\)
\(\Rightarrow x+2+(x-3)(x-2)=(x-2)(x+2)\)
\(\Leftrightarrow x^2-4x+8=x^2-4\)
\(\Leftrightarrow -4x=-12\Leftrightarrow x=3\) (t.m)