a, \(\left(x^3-3x^2+x-3\right):\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+1\right):\left(x-3\right)\)
\(=x^2+1\)
b, \(\left(x^3-2x^2+5x-10\right):\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+5\right):\left(x-2\right)\)
\(=x^2+5\)
c. \(\left(15x^5y^2+25x^4y^3-30x^3y^2\right):5x^3y^2\)
\(=3x^2+5xy-6\)
d, \(\left(2x^3+5x^2-2x+3\right):\left(2x^2-x+1\right)\)
\(=\left[\left(2x^3-x^2+x\right)+\left(6x^2-3x+3\right)\right]:\left(2x^2-x+1\right)\)
\(=\left(2x^2-x+1\right)\left(x+3\right):\left(2x^2-x+1\right)=x+3\)
a: [x3 - 3x2 +x-3] : [x-3]
Ta có:\(x^3-3x^2+x-3=x^2\left(x-3\right)+\left(x-3\right)=\left(x-3\right)\left(x^2+1\right)\)
\(\Rightarrow\left(x^3-3x^2+x-3\right):\left(x-3\right)=x^2+1\)
b: [x3 - 2x2 + 5x - 10 ] : [x-2]
Tương tự ta có:
\(x^3-2x^2+5x-10=\left(x-2\right)\left(x^2+5\right)\)
\(\Rightarrow\left(x^3-2x^2+5x-10\right):\left(x-2\right)=x^2+5\)