\(x+1+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Rightarrow x+1+x+2+x+3+...+x+100=5750\)
\(\Rightarrow100x+1+2+3+...+100=5750\)
\(\Rightarrow100x+\left[\left(\dfrac{100-1}{1}+1\right):2\right]\left(100+1\right)=5750\)
\(\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=700\Rightarrow x=7\)
\(25-\left(30+x\right)=x-\left(123-67\right)\)
\(\Rightarrow25-30+x=x-123+67\)
\(\Rightarrow-5+x=x-56\)
\(\Rightarrow x\in\varnothing\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^4=0\)
\(\Rightarrow\left(x-5\right)^4\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^4=0\Rightarrow x=5\\\left(x-5\right)^2-1=0\Rightarrow\left(x-5\right)^2=1\Rightarrow x=6;4\end{matrix}\right.\)
\(\left(x^2+1\right)\left(x-3\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+1>0\Rightarrow x^2>-1\\x-3< 0\Rightarrow x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+1< 0\Rightarrow x^2< -1\\x-3>0\Rightarrow x>3\end{matrix}\right.\end{matrix}\right.\)
Vậy...