Bài 4: Phương trình tích

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Van Anh Hoang

a. x (x²-1)=0

b. (x-1/2) 2x+5=0

c. x-2 (2/3x - 6)=0

d. x² - 2x=0

e.(x²-2x+1)-4=0

f.x(2x-1)=0

g.4x²+4x+1=0

h.x²-5x+6=0

i. 2x²+3x=0

Hoàng Yến
13 tháng 3 2020 lúc 19:59

\(a.x\left(x^2-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(b.\left(x-\frac{1}{2}\right)\left(2x+5\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{1}{2}=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{5}{2}\end{matrix}\right. \)

Câu \(b\) thấy hơi kì nên chắc đề như này.

\(c.x-2\left(\frac{2}{3}x-6\right)=0\\\Leftrightarrow x-\frac{4}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x=-12\\\Leftrightarrow x=36\)

\(d.x^2-2x=0\\\Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(e.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(f.x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

\(g.4x^2+4x+1=0\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)=0\\\Leftrightarrow x^2+x+\frac{1}{4}=0\\\Leftrightarrow \left(x+\frac{1}{2}\right)^2=0\\\Leftrightarrow x+\frac{1}{2}=0\\ \Leftrightarrow x=-\frac{1}{2}\)

\(h.x^2-5x+6=0\\ \Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

\(i.2x^2+3x=0\\ \Leftrightarrow x\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Thành Trương
13 tháng 3 2020 lúc 20:00

\(\begin{array}{l} a)x\left( {{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = - 1 \end{array} \right.\\ b)\left( {x - \dfrac{1}{2}} \right)\left( {2x + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - \dfrac{1}{2} = 0\\ 2x + 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{2}\\ x = - \dfrac{5}{2} \end{array} \right.\\ c)\left( {x - 2} \right)\left( {\dfrac{2}{3}x - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ \dfrac{2}{3}x - 6 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 9 \end{array} \right. \end{array}\)

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
13 tháng 3 2020 lúc 20:02

a) \(x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy: x∈{-1;0;1}

d) \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

e) \(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: x∈{3;-1}

f) \(x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)

g) \(4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\)

hay \(x=\frac{-1}{2}\)

Vậy: \(x=\frac{-1}{2}\)

h) \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

i) \(2x^2+3x=0\)

\(\Leftrightarrow x\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-3}{2}\right\}\)

Khách vãng lai đã xóa
Nguyễn Thành Trương
13 tháng 3 2020 lúc 20:05

\(\begin{array}{l} d){x^2} - 2x = 0\\ \Leftrightarrow x\left( {x - 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x - 2 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right.\\ e){x^2} - 2x + 1 - 4 = 0\\ \Leftrightarrow {x^2} - 2x - 3 = 0\\ \Leftrightarrow {x^2} - 3x + x - 3 = 0\\ \Leftrightarrow x\left( {x - 3} \right) + \left( {x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 3 = 0\\ x + 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3\\ x = - 1 \end{array} \right. \end{array}\)

\(\begin{array}{l} f)x\left( {2x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ 2x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{1}{2} \end{array} \right. \end{array}\)

Khách vãng lai đã xóa
Nguyễn Thành Trương
13 tháng 3 2020 lúc 20:07

\(\begin{array}{l} g)4{x^2} + 4x + 1 = 0\\ \Leftrightarrow {\left( {2x} \right)^2} + 2.2x + 1 = 0\\ \Leftrightarrow {\left( {2x + 1} \right)^2} = 0\\ \Leftrightarrow 2x + 1 = 0\\ \Leftrightarrow x = - \dfrac{1}{2}\\ h){x^2} - 5x + 6 = 0\\ \Leftrightarrow {x^2} - 2x - 3x + 6 = 0\\ \Leftrightarrow x\left( {x - 2} \right) - 3\left( {x - 2} \right) = 0\\ \Leftrightarrow \left( {x - 2} \right)\left( {x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ x - 3 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 3 \end{array} \right.\\ i)2{x^2} + 3x = 0\\ \Leftrightarrow x\left( {2x + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ 2x + 3 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = - \dfrac{3}{2} \end{array} \right. \end{array}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Mai Phương
Xem chi tiết
Nguyễn Ngọc Linh Chi
Xem chi tiết
Vũ Huệ
Xem chi tiết
Cô bé thần nông
Xem chi tiết
Nguyễn Mai Phương
Xem chi tiết
Lê Dăng Khoa
Xem chi tiết
Diệp Đoàn Văn
Xem chi tiết
Diệp Đoàn Văn
Xem chi tiết
Lê Nhật Bảo Trân
Xem chi tiết