a, Đồ thị hàm số \(y=3x^2\)
b, Phương trình hoành độ giao điểm của đường thẳng \(y=2x+2\) và parabol \(y=3x^2\) là: \(3x^2=2x+2\Leftrightarrow x=\dfrac{1\pm\sqrt{7}}{3}\)
Với \(x=\dfrac{1+\sqrt{7}}{3}\Rightarrow y=\dfrac{8+2\sqrt{7}}{3}\Rightarrow\left(\dfrac{1+\sqrt{7}}{3};\dfrac{8+2\sqrt{7}}{3}\right)\)
Với \(x=\dfrac{1-\sqrt{7}}{3}\Rightarrow y=\dfrac{8-2\sqrt{7}}{3}\Rightarrow\left(\dfrac{1-\sqrt{7}}{3};\dfrac{8-2\sqrt{7}}{3}\right)\)
Sửa đề: \(y=2x+1\)
b) Phương trình hoành độ giao điểm là:
\(3x^2=2x+1\)
\(\Leftrightarrow3x^2-2x-1=0\)
a=3; b=-2; c=-1
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-1}{3}\)
Thay x=1 vào y=2x+1, ta được:
\(y=2\cdot1+1=3\)
Thay \(x=-\dfrac{1}{3}\) vào y=2x+1, ta được:
\(y=2\cdot\dfrac{-1}{3}+1=\dfrac{-2}{3}+1=\dfrac{1}{3}\)
Vậy: Tọa độ giao điểm là (1;3) và \(\left(-\dfrac{1}{3};\dfrac{1}{3}\right)\)