Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Anh Tú

a) Tìm n để n^2+2006 là một số chính phương

b) Cho n là số nguyên tố lớn hơn 3 .Hỏi n^2+2006 là một số nguyên tố hay là hợp số

Siêu sao bóng đá
28 tháng 12 2017 lúc 19:20

a) Đặt n2 + 2006 = a2 ( a \(\in\) Z )

\(\Rightarrow\) 2006 = a2 - n2 = ( a - n )( a + n )

Mà ( a - n )( a + n ) = 2n chia hết cho 2

\(\Rightarrow\) a - n và a + n cùng chẵn lẻ

TH1:

a + n và a - n cùng lẻ \(\Rightarrow\) ( a - n )( a + n ) cùng lẻ ( loại )

TH2:

a + n và a - n cùng chẵn \(\Rightarrow\) ( a - n )( a + n ) chia hết cho 4 ( loại )

Vậy không có số tự nhiên n nào thỏa mãn n2 + 2006 là một số chính phương

b) Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3

Ta có:

n = 3k + 1 hoặc 3k + 2 ( k \(\in\) N* )

TH1:

n = 3k + 1

\(\Rightarrow\) ( 3k + 1 )2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

\(\Rightarrow\) n2 + 2006 là hợp số ( 1 )

TH2:

n = 3k + 2

\(\Rightarrow\) ( 3k + 2 )2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

\(\Rightarrow\) n2 + 2006 là hợp số ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\) n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số


Các câu hỏi tương tự
dream XD
Xem chi tiết
Xem chi tiết
dream XD
Xem chi tiết
Hoàng Nguyễn huy
Xem chi tiết
nhok lớp trưởng
Xem chi tiết
Thùy Linh
Xem chi tiết
Lùi Văn Tiến
Xem chi tiết
Hồ Hoàng Long
Xem chi tiết
Trang Bui
Xem chi tiết