xét dấu các biểu thức sau
a) \(\frac{x^2}{3x-8}\ge1\)
b) \(\frac{x^2-3x+24}{x^2-3x+3}
B1 xét dấu các biểu thức
a f(x)=(1-2x) (2x2-5x+3)
b g(x)=\(\frac{-6x^3-19x^2-11x+6}{x^2-4x+3}\)
B2 giải bất phương trình
\(\frac{2-x}{x^3+x^2}>\frac{1-2x}{x^3-3x^2}\)
B3 Tìm tập xác định của hàm số y=\(\sqrt{\frac{1}{x^2+7x+6}-\frac{1}{x^2-2x+5}}\)
câu 1: lập bảng xét dấu để tìm nghiệm của bất pt sau:
a/\(4x^2-5x+1\ge0\)
b/\(3x^2-4x+1\le0\)
câu 2:
a/\(|x^2-3x+2|\le8-2x\)
b/\(x^2-5x+\sqrt{x\left(5-x\right)}+2< 0\)
c/\(\sqrt{8+2x-x^2}>6-3x\)
d/\(2\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge x\)
e/\(|x^2-4x+3|>2x-3\)
f/\(\sqrt{-x^2+6x-5}\le8-2x\)
g/\(x^2-8x-\sqrt{x\left(x-8\right)}< 6\)
h/\(3\sqrt{1-\frac{3}{x}}+\sqrt{3x-\frac{27}{x}}\ge x\)
Câu 2 : Xét dấu các biểu thức sau :
A = \(\frac{4-3x}{2x+1}\)
B = \(1-\frac{2-x}{3x-2}\)
C = \(x\left(x-2\right)^2\left(3-x\right)\)
D = \(\frac{x\left(x-3\right)^2}{\left(x-5\right)\left(1-x\right)}\)
E = \(-x^2+x+6\)
F = \(2x^2-\left(2+\sqrt{3}\right)x+\sqrt{3}\)
G = \(\left(3x-1\right)\left(x+2\right)\)
H = \(\frac{2-3x}{5x-1}\)
K = \(\left(-x+1\right)\left(x+2\right)\left(3x+1\right)\)
L = \(2-\frac{2+x}{3x-2}\)
M = \(9x^2-1\)
N = \(-x^3+7x-6\)
O = \(x^3+x^2-5x+3\)
P = \(x^2-x-2\sqrt{2}\)
Q = \(\frac{1}{3-x}-\frac{1}{3+x}\)
R = \(\frac{x^2-6x+8}{x^2+8x-9}\)
S= \(\frac{x^2+4x+4}{x^4-2x^2}\)
T = \(\frac{\left|x+1\right|-1}{x^2+x+1}\)
a, (2x-5)(x+2)/-4x+3>0
b, x-3/x+1>x+5/x-2
c, 3x-4/x-2>1
d, 2x^2+x/1-2x≥1-x
e, -3x^2-x+4/x^2+3x+5>0
f, 5x^2+3x-8/x^2-7x+6<0
tìm GTLN
A=\(3x^2\left(8-x^2\right)\) với \(-2\sqrt{2}\le x\le2\sqrt{2}\)
B=4x(8-5x) với \(0\le x\le\frac{8}{5}\)
C=4(x-1)(8-5x) với \(1\le x\le\frac{8}{5}\)
D=x\(\left(3-\sqrt{3}\right)\) với \(0\le x\le\sqrt{3}\)
Tìm GTNN
A=\(\frac{3x}{2}+\frac{2}{x-1}\) với x>1
B=x+\(\frac{2}{3x-1}\) với x>1/3
Bài 1: Giải các pt sau: 1) x2 + 5x + 6 = 0 2)
x2 - x - 6 = 0
3) (x2 + 1) (x2 + 4x + 4) = 0
4) x3 + x2 + x + 1 = 0
5) x2 - 7x + 6 = 0
6) 2x2 - 3x - 5 = 0
7) x2 + x - 12 = 0
8) 2x3 + 6x2 = x2 + 3x
9) (3x - 1) (x2 + 2) = (3x - 1)(7x - 10)
Bài 2: Cho biểu thức A = (5x - 3y + 1) (7x + 2y -2) a) Tìm x sao cho với y = 2 thì A = 0 b) Tìm y sao cho với x = -2 thì A = 0
giải các bất phương trình sau :
a) \(\left|x^2-2x-3\right|\le3x-3\)
b)\(\frac{2x-4}{\sqrt{x^2-3x-10}}>1\)
c)\(\sqrt{x+3}-\sqrt{7-x}>\sqrt{2x-8}\)
d)\(\left(2x-5\right)\sqrt{2x^2-5x+2}\le0\)
e)\(\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
f)\(\sqrt{3x^2+5x+7}-\sqrt{3x^2+5x+2}\ge1\)
Giai các hệ bất phương trình sau :
a/ \(\left\{{}\begin{matrix}x^2+x+5< 0\\x^2-6x+1>0\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x^2+x-6>0\\3x^2-10x+3\ge0\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}-2x^2-5x+4< 0\\-x^2-3x+10>0\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x^2+4x+3\ge0\\2x^2-x-10\le\\2x^2-5x+3>0\end{matrix}\right.0}\)
e/ \(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
f/ \(\left\{{}\begin{matrix}-x^2+4x-7< 0\\x^2-2x-1\ge0\end{matrix}\right.\)