a) Ta có: \(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)=\frac{2}{3}\)
⇒\(\frac{2}{3}:\left(x-1\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
⇒\(x-1=\frac{2}{3}:\frac{1}{6}=\frac{2}{3}\cdot6=4\)
hay x=5
Vậy: x=5
b) \(5,4-3\left[x-120\%\right]=\frac{3}{10}\)
⇔\(\frac{27}{5}-3\cdot\left(x-\frac{6}{5}\right)=\frac{3}{10}\)
⇔\(3\left(x-\frac{6}{5}\right)=\frac{27}{5}-\frac{3}{10}=\frac{51}{10}\)
hay \(x-\frac{6}{5}=\frac{51}{10}\cdot\frac{1}{3}=\frac{17}{10}\)
⇔\(x=\frac{17}{10}+\frac{6}{5}=\frac{29}{10}\)
Vậy: \(x=\frac{29}{10}\)
c) \(10\cdot3^{x+2}-3^x=89\)
\(\Leftrightarrow10\cdot3^2\cdot3^x-3^x=89\)
\(\Leftrightarrow3^x\left(90-1\right)=89\)
\(\Leftrightarrow3^x=1\)
hay x=0
Vậy: x=0
d) \(5\cdot\left(x-0,2\right)=3x+\left(\frac{-2}{3}\right)^3\)
⇒\(5\cdot\left(x-\frac{1}{5}\right)=3x+\frac{-8}{27}\)
\(\Leftrightarrow5x-1-3x-\frac{-8}{27}=0\)
\(\Leftrightarrow2x-\frac{19}{27}=0\)
\(\Leftrightarrow2x=\frac{19}{27}\)
hay \(x=\frac{\frac{19}{27}}{2}=\frac{19}{27}\cdot\frac{1}{2}=\frac{19}{54}\)
Vậy: \(x=\frac{19}{54}\)
e) \(\left(2x+\frac{3}{4}\right)^2-1,5=2\frac{1}{2}\)
\(\Leftrightarrow\left(2x+\frac{3}{4}\right)^2=\frac{5}{2}+\frac{3}{2}=\frac{8}{2}=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{3}{2}=-2\\2x+\frac{3}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2-\frac{3}{2}\\2x=2-\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{7}{2}\\2x=\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{2}\cdot\frac{1}{2}\\x=\frac{1}{2}\cdot\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{7}{4};\frac{1}{4}\right\}\)