a)
Ta có :
\(81^7-27^9-9^{13}\)
= \(3^{28}-3^{27}-3^{26}\)
= \(3^{23}\left(3^5-3^4-3^3\right)\)
= \(3^{23}\cdot135=3^{23}\cdot3\cdot45\) chia hết cho 45
b)
\(5+5^2+5^3+.....+5^{120}\)
số số hạng là : (120 - 1) : 1 + 1 = 120 (số)
=>\(5+5^2+5^3+.....+5^{120}=\left(5+5^2\right)+\left(5^3+5^4\right)+......+\left(5^{119}+5^{120}\right)\)= \(5\left(1+5\right)+5^3\left(1+5\right)+....+5^{119}\left(1+5\right)\)
= \(5\cdot6+5^3\cdot6+......+5^{119}\cdot6\)
= \(6\left(5+5^3+.....+5^{119}\right)\) chia hết cho 6
\(5+5^2+5^3+.....+5^{120}\)
= \(5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+......+5^{118}\left(1+5+5^2\right)\)
= \(5\cdot31+5^4\cdot31+......+5^{118}\cdot31\)
= \(31\left(5+5^4+.......+5^{118}\right)\) chia hết cho 31
1.
a) Ta có: \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5\)* Lại có : \(5⋮5\Rightarrow5.3^{26}⋮5\)
Và \(3^{26}⋮3^2=9\Rightarrow3^{26}.5⋮9\)
Mặt khác, do \(\left(5,9\right)=1\Rightarrow3^{26}.5⋮5.9=45\)
Vậy \(87^7-27^9-9^{13}⋮45\left(đpcm\right)\)
b) Đặt \(A=5+5^2+...+5^{120}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{119}+5^{120}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{118}\left(5+5^2\right)\)
\(A=\left(5+5^2\right)\left(1+5^2+...+5^{118}\right)\)
\(A=30.\left(1+5^2+...+5^{118}\right)\)
Do \(30⋮6\Rightarrow30\left(1+5^2+...5^{118}\right)⋮6\left(1\right)\)
Tương tự, \(A=\left(5+5^2+5^3\right)+...+\left(5^{118}+5^{119}+5^{120}\right)\)
\(A=\left(5+5^2+5^3\right)+...+5^{117}\left(5+5^2+5^3\right)\)
\(A=\left(5+5^2+5^3\right)\left(1+...+5^{117}\right)\)
\(A=155\left(1+...+5^{117}\right)\)
Do \(155⋮31\Rightarrow155\left(1+...+5^{117}\right)⋮31\left(2\right)\)
Từ (1) và (2) => Đpcm.
tik mik nha !!!