a) Xét:
5121 có chữ số tận cùng là 5. Đặt 5121 = \(\overline{A5}\)
3515 có chữ số tận cùng là 5. Đặt 3515 = \(\overline{B5}\)
Do đó \(5^{121}-35^{15}=\overline{A5}-\overline{B5}=\overline{C0}⋮10\left(đpcm\right)\)
b) Ta có:
\(\left(13-12\right)^{2015}=1^{2015}=1\)
\(5^{17}.5^{14}:5^{31}=5^0=1\)
Vậy \(\left(13-12\right)^{2015}=5^{17}.5^{14}:5^{31}\)
c) \(9+5x=4^7:4^3-3^4\)
\(\Leftrightarrow9+5x=4^4-3^4\)
\(\Leftrightarrow9+5x=256-81\)
\(\Leftrightarrow9+5x=175\)
\(\Leftrightarrow5x=175-9=166\)
\(\Rightarrow x=166:5=33\dfrac{1}{5}\)