Bài 1. Tìm x, y, z biết: \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\) (trong đó, a + b + c = 3)
Bài 2.
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\). Chứng minh rằng: 18<S<19
Chứng minh rằng \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) (với \(n\in N^{\cdot}\))
Áp dụng cho S = \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Chứng minh 18<S<19 ?
a) Chứng minh rằng: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
b/ Cho S =
Chứng minh rằng \(17< \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}< 18\)
Cho A=\(\dfrac{1}{\sqrt{2}}\)+\(\dfrac{1}{\sqrt{3}}\)+....+\(\dfrac{1}{\sqrt{2025}}\)
Chứng minh rằng 2(\(\sqrt{2026}\)-\(\sqrt{2}\)) <A>88
1.Cho x, y \(\ge\)0 và x+ y=1
Chứng minh rằng : \(x^3+y^3\ge\dfrac{1}{4}\)
2. Cho \(a,b,c\ge0\).Chứng minh rằng:
a, \(a^3+b^3>ab\left(a+b\right)\)
b, \(a^3+b^3+c^3\ge a^2b+ b^2c+c^2a\)
3. Cho x+ y+ z=3 và x, y, z>0. Chứng minh rằng:
a, \(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{3}{2}\)
b, \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{3}{2}\)
Chứng minh rằng : với mọi x > 1 ta có : 3(x^2-1/x^2) < 2(x^3 - 1/x^3)
Chứng minh rằng \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...+\dfrac{1}{2009\sqrt{2008}}< 2\)
Bài 1: Cho a, b, c ≥ 0
Chứng minh rằng: \(a^3+b^3+c^3\ge\dfrac{a^2b+b^2c+c^2a}{3}\)
Bài 2: Với a ≥0. Thì\(\sqrt[3]{a}+\sqrt[3]{a^2}\le1+a\)
Bài 3: Chứng minh rằng:\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge6\). Với x, y, z>0