Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Giải phương trình:
1. \(x^2+3x+8=\left(x+5\right)\sqrt{x^2+x+2}\)
2. \(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)
3. \(x^3+6x^2-2x+3-\left(5x-1\right)\sqrt{x^3+3}=0\)
4. \(4\sqrt{x+1}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
5. \(4\sqrt{x+3}=1+4x+\dfrac{2}{x}\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Giải ptrinh :
\(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
\(3x^2+3x+2=\left(x+6\right)\sqrt{3x^2-2x-3}\)
a)\(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
b)\(x^2+x+12\sqrt{x+1}=36\)
c)\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)
d)\(\sqrt{x^2+12}-3x=\sqrt{x^2+5}-5\)
e)\(4x^2+12+\sqrt{x-1}=4\left(x\sqrt{5x-1}+\sqrt{9-5x}\right)\)
f)\(4x^3-25x^2+43x+x\sqrt{3x-2}=22+\sqrt{3x-2}\)
g)\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
h)\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
i)\(\sqrt{1-3x}-\sqrt[3]{3x-1}=\left|6x-2\right|\)
k)\(\sqrt{2x^3+3x^2-1}=2x^2+2x-x^3-1\)
l)\(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)
\(x^3+10-2\sqrt{2x+1}=2\left(8x+\sqrt{16-3x}\right)\)
Giải phương trình:
1, \(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
2, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{16x-4x^2-15}\)
3, \(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)