Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Wolf 2k6 has been cursed

8/79
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn O . tiếp tuyếm tại A của đường tròn O cắt đường thẳng BC tại M
A/chứng minh MA2 = MB.MC
B/vẽ đường cao BD của tam giác ABC , đường thẳng qua D và song song với MA cắt AB tại E . chứng minh CE là đường cao của tam giác ABC
c/ gọi N là điểm chính giữa cung nhỏ BC . gọi I và K lần lượt là giao điểm của AN với BD và CE . tìm điều kiện của tam giác ABC để có IB/ID . KC/KE = IB/ID+KC/KE
thankkkkkkk
 

An Thy
23 tháng 6 2021 lúc 16:20

a) Vì MA là tiếp tuyến \(\Rightarrow\angle MAB=\angle MCA\) (góc tạo bởi tiếp tuyến và dây cung bằng góc nội tiếp chắn cung đó)

Xét \(\Delta MAB\) và \(\Delta MCA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAB=\angle MCA\\\angle AMCchung\end{matrix}\right.\)

\(\Rightarrow\Delta MAB\sim\Delta MCA\left(g-g\right)\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Rightarrow MA^2=MB.MC\)

b) Vì \(DE\parallel AM\) và \(AM\bot AO\) (tiếp tuyến) \(\Rightarrow DE\bot AO\)

\(\Rightarrow\angle OAD+\angle ADE=90\)

Ta có: \(\angle OAD=\dfrac{180-\angle AOC}{2}\) (\(\Delta OAC\) cân tại O) \(=90-\dfrac{1}{2}\angle AOC\)

\(=90-\angle ABC\)

\(\Rightarrow\angle ADE=\angle ABC\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle BEC=\angle BDC=90\)

\(\Rightarrow\) CE là đường cao

c) Vì N là điểm chính giữa cung BC \(\Rightarrow\angle BAN=\angle CAN\)

\(\Rightarrow AN\) là phân giác

Ta có: AI là phân giác \(\angle BAD\Rightarrow\dfrac{IB}{ID}=\dfrac{AB}{AD}\left(1\right)\)

AK là phân giác \(\angle CAE\Rightarrow\dfrac{KC}{KE}=\dfrac{AC}{AE}\left(2\right)\)

Xét \(\Delta DAB\) và \(\Delta EAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AEC=\angle ADB=90\\\angle BACchung\end{matrix}\right.\)

\(\Rightarrow\Delta DAB\sim\Delta EAC\left(g-g\right)\Rightarrow\dfrac{AB}{AD}=\dfrac{AC}{AE}\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow\dfrac{IB}{ID}=\dfrac{KC}{KE}\)

Theo đề: \(\dfrac{IB}{ID}.\dfrac{KC}{KE}=\dfrac{IB}{ID}+\dfrac{KC}{KE}\Rightarrow\left(\dfrac{AB}{AD}\right)^2=2\dfrac{AB}{AD}\Rightarrow\dfrac{AB}{AD}=2\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{1}{2}\Rightarrow cosBAC=\dfrac{1}{2}\Rightarrow\angle BAC=60\)

Vậy tam giác ABC có \(\angle BAC=60\) thì \(\dfrac{IB}{ID}.\dfrac{KC}{KE}=\dfrac{IB}{ID}+\dfrac{KC}{KE}\)

 

 


Các câu hỏi tương tự
Nguyễn Thanh Huyền
Xem chi tiết
Eros Starfox
Xem chi tiết
Muichirou
Xem chi tiết
Xuân Hùng Hoàng
Xem chi tiết
Lê Minh Anh
Xem chi tiết
41 Thu Trang Lớp 9/7
Xem chi tiết
𝖈𝖍𝖎𝖎❀
Xem chi tiết
Hân Hân
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết