Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
a) trên các đoạn [-4; 4] và [0;5] ;
b) trên các đoạn [0;3] và [2;5] ;
c) trên các đoạn [2;4] và [-3;-2] ;
d) trên đoạn [-1;1] .
a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.
b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).
c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.
Có bao nhiêu số nguyên \(m\ge2\) sao cho tồn tại số thực \(x\) thỏa mãn \(\left(m^{lnx}+4\right)^{lnm}+4=x\)?
A. 8.
B. 9.
C. 1.
D. Vô số.
Cho phương trình: \(4.3^{log\left(100x^2\right)}+9.4^{log\left(10x\right)}=13.6^{1+log\left(x\right)}\) . Gọi a, b lần lượt là hai nghiệm của phương trình. Tìm tích ab.
A. ab = \(\dfrac{1}{10}\)
B. ab = 1
C. ab = 100
D. ab = 10
tính P
P=\(\sqrt[4]{\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}}-\sqrt[4]{\dfrac{3-2\sqrt{2}}{3+2\sqrt{2}}}\)
Giải phương trình sau :
\(\sqrt{3+\log_2\left(x^2-4x+5\right)}+2\sqrt{5-\log_2\left(x^2-4x+5\right)}\)
Giải phương trình :
\(3^x.2^{x^2}=1\)
Giải bất phương trình :
\(x^{\log_2x}
Bài 1:
a)
ta có: \(\dfrac{50}{100}=\dfrac{1}{2};\dfrac{-\dfrac{4}{13}}{-\dfrac{8}{13}}=\dfrac{1}{2};\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{1}{2};\dfrac{-\dfrac{2}{17}}{-\dfrac{4}{17}}=\dfrac{1}{2}\)
\(\dfrac{50}{100}=\dfrac{\dfrac{4}{13}}{\dfrac{8}{13}}=\dfrac{\dfrac{2}{15}}{\dfrac{4}{15}}=\dfrac{\dfrac{2}{17}}{\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{1}{2}\)
vậy \(A=\dfrac{1}{2}\)
b)
\(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\\ B=\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{2}{29}-\dfrac{2}{29}+\dfrac{3}{39}-...-\dfrac{199}{1999}+\dfrac{200}{2009}\\ B=\dfrac{200}{2009}\)
Bài 2:
\(\dfrac{a}{b}=\dfrac{b}{3c}=\dfrac{c}{9a}=\dfrac{b+c}{3c+9a}\)
suy ra: \(b=\dfrac{3c\left(b+c\right)}{3c+9a}=\dfrac{3cb+3c^2}{3c+9a}=\dfrac{bc+c^2}{c+3a}\)
\(c=\dfrac{9a\left(b+c\right)}{3c+9a}=\dfrac{9ab+9ac}{3c+9a}=\dfrac{3ab+3ac}{c+3a}\)
giả sử b=c là đúng thì :\(\dfrac{bc+c^2}{c+3a}=\dfrac{3ab+3ac}{c+3a}\)
hay \(bc+c^2=3ab+3ac\\ \Leftrightarrow c^2+bc-3ab-3ac=0\)
\(\Leftrightarrow\left(b+c\right)\left(c-3a\right)=0\Rightarrow c-3a=0\Rightarrow c=3a\)
b) \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2016}\right)=\dfrac{2015}{4032}< 1\)
mà \(1< \dfrac{4}{3}\) nên \(\dfrac{2015}{4032}< \dfrac{4}{3}\)
hay \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}< \dfrac{4}{3}\)
bài 3:
a)\(\left(x-y\right)\left(x+y\right)=x^2-y^2-xy+xy=x^2-y^2\) (đpcm)
b) áp dụng BĐT tam giác, ta có:
\(a+b>c\Rightarrow a+b-c>0\\ b+c>a\Rightarrow b+c-a< 0\\ a+c>b\Rightarrow a-b+c>0\)
suy ra: \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< 0\: \: \: \: \: \: \)
đồng thời \(abc>0\) với mọi a, b, c dương.
nên \(\left(a+b-c\right)\left(b+c-a\right)\left(a-b+c\right)< abc\)
ko tìm dc dấu bằng xảy ra.