Bài 1: Tính hợp lý. (nếu có thể)
A= 1/10+1/40+1/88+1/154+1/238+1/340
B=2 +1/547 . 3/211 - 546/547 - 4/547.211
D= 1/3+1/6+1/12+1/24+1/48
E= 1/2 - 1/4 + 1/8 - 1/16 +...+ 1/2048
F= 0,5 - 1/3 - 0,4 -5/7 - 1/6 + 4/35 - 1/41
D= 1/3 +1/6 +1/12 +1/24 +1/48 + 1/96
E= 1/2 - 1/4 + 1/8 - 1/16 +...+ 1/2048
F= -0,5 -1/3 - 0,4 - 5/7 - 1/6 + 4/35 - 1/41
Ai đó giúp mik vớiiiii
Thực hiện phép tính
-3/4 . (-55/9) . 8/11
1 4/23 + ( 5/21 - 4/23) + 16/21 - 1/2
-3/8 . 6/13 + 7/13 . -3/8 + 1 3/8
75% - ( 5/2 + 5/3 ) + ( - 1/2) mũ 2
Giúp mình với đi please
Thực hiện phép tính( tính nhanh nếu có thể)
a, \(\left(-\dfrac{1}{2}\right)^2.\dfrac{7}{4}:\left(\dfrac{5}{8}-1\dfrac{3}{16}\right)\)
b, \(17\dfrac{6}{11}.\dfrac{4}{27}-8\dfrac{6}{11}:\dfrac{27}{4}+350\%\)
tính
a) (\(2\dfrac{5}{6}+1\dfrac{4}{9}\)):(\(10\dfrac{1}{12}\)-9\(\dfrac{1}{2}\))
b) \(\dfrac{0,8:\left(\dfrac{4}{5}:1,25\right)}{0,64-\dfrac{1}{25}}\)
c) \(\dfrac{\left(100-\dfrac{2}{25}\right):\dfrac{4}{7}}{\left(6\dfrac{5}{9}-3\dfrac{1}{4}\right).2\dfrac{2}{27}}\) + (1,2 . 0,5) : \(\dfrac{3}{5}\)
\(g,6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)\)
\(h,7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)\)
\(i,6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)\)
\(k,7\frac{5}{11}-\left(2\frac{3}{7}+3\frac{5}{11}\right)\)
giúp mk với
bài yêu cầu tính nhanh nha
Bài 5 : Chững minh rẳng :
a) S= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) CMR :1< S <2
b) \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)
c) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
d) \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{2}\)
Bài :So sánh phân số sau:
a)\(\frac{1985.1987-1}{1980+1985.1986}và1\)
b) A= \(\frac{13^{15}+1}{13^{16}+1}\)và B = \(\frac{13^{16}+1}{13^{17}+1}\)
c)\(\frac{18}{53}và\frac{26}{79}\)
d)\(\frac{5}{8}và\frac{14}{17}\)
e)\(\frac{1}{5^{199}}và\frac{1}{3^{300}}\)
g)\(\frac{1}{3^{17}}và\frac{1}{5^{10}}\)
h) \(\frac{18}{109}và\frac{5}{30}\)
Cho A= \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+\dfrac{1}{10^2}+...+\dfrac{1}{160^2}\)
Chứng minh: \(\dfrac{1}{8}< A< \dfrac{3}{16}\)
\(a,\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\) ;\(b,5\frac{4}{7}:x=13\) ;\(c,\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(d,\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\) ;\(e,8\frac{2}{3}:x-10=-8\)
\(g,x+30\%x=-1,3\) ;\(i,3\frac{1}{3}x+16\frac{3}{4}=-13,25\)
\(k,\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\) ;m,/2x-1/=\(\left(-4^2\right)\)