Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)
1) x2 = 4 => x = 2;
2) x2 = 4 <=> x = 2;
3) \(\left|x-1\right|=1=>x=2\)
4) \(\sqrt{x-1}=2=>x-1=4\)
5) \(\dfrac{2x+1}{x}=4x=>2x+1=4x^2\)
6) x2+3x-4=0 => x=1
7) \(\sqrt{P\left(x\right)}=g\left(x\right)=>P\left(x\right)=\left(g\left(x\right)\right)^2\)
8) \(\dfrac{x^2+5x-6}{x-1}=2x-5< =>x=11\)
giải pt: \(\sqrt{2x^2-3x-1}-x^2+2x+1=0\)
Giải phương trình
\(\sqrt{x^2-2x}+\sqrt{x^2-4x}=\sqrt{3x^2+x}\)
A =\(\left\{x\in N\backslash\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\right\}\)
B =\(\left\{n\in N^+\backslash3x< n< 30\right\}\)
Xét A
\(\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\)
=> \(\left[{}\begin{matrix}\left(2x-x^2\right)=0=>x=2;x=0\\\\\left(2x^2-3x-2\right)=0=>x=2;x=-\frac{1}{2}\end{matrix}\right.\)
Vì \(x\in N\) => \(A=\left\{2\right\}\)
Xét B
\(3x< n^2< 30\)
<=> \(6< n^2< 30\)
<=> \(\sqrt{6}< n< \sqrt{30}\)
=>\(\left[\sqrt{6};\sqrt{30}\right]\)
Vì \(B\in N^+\) => \(B=\left[3;5\right]\)
\(A\cap B=\varnothing\)
giải pt: \(\sqrt{2x-1}+x^2-3x+1=0\)
Giải hpt :
\(\left\{{}\begin{matrix}\sqrt{x^2+y}+\sqrt{3}=\sqrt{y^2-3x}+\sqrt{7}\\\sqrt{y-1}+2y^2+1=\sqrt{x}+x^2+xy+3y\end{matrix}\right.\)
Xác định các tập hợp sau bằng cách liệt kê
A = {x | (2x + 1)(x 2 + x – 1)(2x 2 – 3x + 1) = 0}
B = {x | 6x 2 – 5x + 1 = 0}
C = {x | (2x + x 2 )(x 2 + x – 2)(x 2 – x – 12) = 0}
D = {x | x 2 > 2 và x < 4}
E = {x | x 2 và x > –2}
F = {x ||x | 3}
G = {x | x 2 − 9 = 0}
H = {x | (x − 1)(x 2 + 6x + 5) = 0}
I = {x | x 2 − x + 2 = 0}
J = {x | (2x − 1)(x 2 − 5x + 6) = 0}
K = {x | x = 2k với k và −3 < x < 13}
L = {x | x 2 > 4 và |x| < 10}
M = {x | x = 3k với k và −1 < k < 5}
N = {x | x 2 − 1 = 0 và x 2 − 4x + 3 = 0
Xác định các tập hợp sau bằng cách liệt kê
A = {x | (2x + 1)(x 2 + x – 1)(2x 2 – 3x + 1) = 0}
B = {x | 6x 2 – 5x + 1 = 0}
C = {x | (2x + x 2 )(x 2 + x – 2)(x 2 – x – 12) = 0}
D = {x | x 2 > 2 và x < 4}
E = {x | x 2 và x > –2}
F = {x ||x | 3}
G = {x | x 2 − 9 = 0}
H = {x | (x − 1)(x 2 + 6x + 5) = 0}
I = {x | x 2 − x + 2 = 0}
J = {x | (2x − 1)(x 2 − 5x + 6) = 0}
K = {x | x = 2k với k và −3 < x < 13}
L = {x | x 2 > 4 và |x| < 10}
M = {x | x = 3k với k và −1 < k < 5}
N = {x | x 2 − 1 = 0 và x 2 − 4x + 3 = 0
Tìm điều kiện tham số để hệ phương trình có nghiệm duy nhất :
1, \(\sqrt{x+1}+\sqrt{3-x}+2\sqrt{\left(x+1\right)\left(3-x\right)}=m\)
2, \(\sqrt{x^2+1}+\sqrt[3]{1-x^2}=m\)
3, \(\sqrt{x+2}+\sqrt{4-x}+4\sqrt{\left(x+2\right)\left(4-x\right)}=m\)