\(\frac{2x+10}{x+3}=\frac{2\left(x+3\right)+4}{x+3}=2+\frac{4}{x+3}\)
Vậy để \(2x+10⋮x+3\) thì \(x+3\inƯ\left(4\right)\)
Mà Ư(4)={1;-1;2;-2;4;-4}
=>x+3={1;-1;2;-2;4;-4}
Ta có bẳng sau:
x+3 | 1 | -1 | 2 | -2 | 4 | -4 |
x | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy x={-2;-4;-1;-5;1;-7}
\(2x+10⋮x+3\\ \Rightarrow2\left(x+3\right)+4⋮x+3\\ \Rightarrow4⋮x+3\\ \Rightarrow x+3\in\text{Ư}\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\\ x\in\left\{-2;-1;1;-4;-5;-7\right\}\)