\(\left(2\sqrt{7}+7\sqrt{3}\right)\left(\sqrt{7}-2\sqrt{3}\right)=14-4\sqrt{21}+7\sqrt{21}-42=3\sqrt{21}-28\)
\(\left(2\sqrt{7}+7\sqrt{3}\right)\left(\sqrt{7}-2\sqrt{3}\right)=14-4\sqrt{21}+7\sqrt{21}-42=3\sqrt{21}-28\)
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
\(\sqrt{2+\sqrt{2}}.\sqrt{3+\sqrt{7+\sqrt{2}}}.\sqrt{3+\sqrt{6+\sqrt{7+\sqrt{2}}}}.\sqrt{3-\sqrt{6+\sqrt{7+\sqrt{2}}}}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
1) \(\sqrt{7-2\sqrt{10}}\) - \(\sqrt{7+2\sqrt{10}}\)
2) \(\sqrt{4-2\sqrt{3}}\) + \(\sqrt{4+2\sqrt{3}}\)
3) \(\sqrt{6-4\sqrt{2}}\) + \(\sqrt{22-12\sqrt{2}}\)
Kỹ thuật nhân thêm \(\sqrt{2}\)
P = \(\dfrac{\sqrt{7-3\sqrt{5}.\left(7+3\sqrt{5}\right)}}{3\sqrt{10}+7\sqrt{2}}\)
Không dùng máy tính hãy so sánh:
\(A=\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(B=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)
Rút gọn:
a) \(\dfrac{3\sqrt{7}+7\sqrt{3}}{\sqrt{21}}\)
b) \(\dfrac{2\sqrt{5}-4\sqrt{10}}{3\sqrt{10}}\)
c) \(\dfrac{3-\sqrt{7}}{3+\sqrt{7}}-\dfrac{3+\sqrt{7}}{3-\sqrt{7}}\)
Tính: a. \(\left(\sqrt{10}+\sqrt{2}\right)\cdot\left(6-2\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}\)
b. \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
c. \(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)
d, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)
e, \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{7}}\)
b. \(\dfrac{5}{1-\sqrt{2}-\sqrt{3}}\)
c. \(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}+\sqrt{2}}\)
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}-\sqrt{7}}\)
b. \(\dfrac{5}{2-\sqrt{3}-\sqrt{5}}\)
c. \(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}-\sqrt{2}}\)
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{7}}\)
b. \(\dfrac{5}{1-\sqrt{2}-\sqrt{3}}\)
c.\(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}+\sqrt{2}}\)