1) gpt \(x^2+3x\sqrt{\dfrac{x^2+1}{x}}=10x-1\)
2) ghpt \(\left\{{}\begin{matrix}x^2+y^2+2\left(x+y\right)=6\\xy\left(x+2\right)\left(y+2\right)=9\end{matrix}\right.\)
3) cho a,b,c dương thỏa abc=1
CMR \(\dfrac{2}{a^2\left(b+c\right)}+\dfrac{2}{b^2\left(c+a\right)}+\dfrac{2}{c^2\left(a+b\right)}\ge3\)
cho a,b,c là các số dương thỏa mãn: ab + bc + ac=3abc.
Tìm gái trị nhỏ nhất của biểu thức:
K= \(\dfrac{a^2}{c\left(c^2+a^2\right)}+\dfrac{b^2}{a\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(b^2+c^2\right)}\)
1.Cho các số dương x và y tm: \(\dfrac{x^2+1}{y^2}=1\)
Tìm Min A=\(\dfrac{x}{y}+\dfrac{y}{x}\)
2. Cho a,b,c>0 . CM: \(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{c+\sqrt{\left(a+c\right)\left(c+b\right)}}\le1\)
Giúp mk vs mình đag cần gấp lắm vì ko có chủ đề là Bđt nên mk ms đặt là căn bậc 2 nhak
ta có \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}=\sqrt{\left(1+a\right)\left(a^2-a+1\right)}.\sqrt{\left(1+b\right)\left(b^2-b+1\right)}\)
Mà \(\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\dfrac{a+1+a^2-a+2}{2}=\dfrac{a^2+2}{2}\)
Tương tự thì \(\sqrt{\left(1+a^3\right)\left(1+b^3\right)}\le\dfrac{\left(a^2+2\right)\left(b^2+2\right)}{4}\Rightarrow\dfrac{a^2}{\sqrt{\left(1+a^3\right)\left(1+B^3\right)}}\ge\dfrac{4a^2}{\left(a^2+2\right)\left(b^2+2\right)}\)
=\(\dfrac{4a^2\left(c^2+2\right)}{\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)}\)
Tương tự rồi + vào, ta có
...\(\ge4\dfrac{a^2\left(c^2+2\right)+b^2\left(a^2+2\right)+c^2\left(b^2+2\right)}{\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)}\)
ta cần chứng minh \(3\left[a^2\left(c^2+2\right)+b^2\left(a^2+2\right)+c^2\left(b^2+2\right)\right]\ge\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\)
đến đây nhân tung ra và dùng cô-si tiếp
Cho các số thực dương x, y, z thỏa mãn : xyz=1.CMR:
\(\dfrac{1}{\left(\sqrt{xy}+\sqrt{x}+1\right)^2}+\dfrac{1}{\left(\sqrt{yz}+\sqrt{y}+1\right)^2}+\dfrac{1}{\left(\sqrt{xz}+\sqrt{z}+1\right)^2}\ge\dfrac{1}{3}\)
Giúp mk với , mk sắp thi r...
1/ cho a,b,c thỏa \(ab+bc+ca\ge11\)
c/m \(\sqrt[3]{a^2+3}+\dfrac{7}{5\sqrt[3]{14}}\sqrt[3]{b^2+3}+\dfrac{\sqrt[3]{9}}{5}\sqrt[3]{c^2+3}\ge\dfrac{23}{5\sqrt[3]{2}}\)
2)cho a,b,c dương thỏa a+b+c=3
c/m \(\left(a^3+b^3+c^3\right)\left(a^2-b^2\right)\left(b^2-c^2\right)\left(c^2-a^2\right)\le\dfrac{729\sqrt{3}}{8}\)
p/s: cách của mik đa phần dùng cô-si (I need another way!!)
cho a,b,c dương thỏa \(a^3+b^3+c^3\ge9\)
cmr \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^3\le\left(\dfrac{a^3+b^3+c^3}{3}\right)^2\)
Cho ba số thực a , b , c đôi một phân biệt . CMR :
\(\dfrac{a^2}{\left(b-c\right)^2}+\dfrac{b^2}{\left(c-a\right)^2}+\dfrac{c^2}{\left(a-b\right)^2}\ge2\)
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)