1, \(\frac{x^2+2x+1}{2x^2-2}=\frac{\left(x+1\right)^2}{2\left(x^2-1\right)}=\frac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}=\frac{x+1}{2\left(x-1\right)}\)= \(\frac{x+1}{2x-2}\)
2 \(\frac{x^2-6x+9}{5x^2-45}=\frac{\left(x-3\right)^2}{5\left(x^2-9\right)}=\frac{\left(x-3\right)^2}{5\left(x-3\right)\left(x+3\right)}=\frac{x-3}{5x+15}\)
3 \(\frac{x^2-12x+36}{2x^2-4x}=\frac{\left(x-6\right)^2}{2x\left(x-2\right)}\)
4 \(\frac{x^2-10x+25}{2x^2-50}=\frac{\left(x-5\right)^2}{2\left(x^2-25\right)}=\frac{\left(x-5\right)^2}{2\left(x-5\right)\left(x+5\right)}=\frac{x-5}{2x+10}\)