Bài 1:
Ta có:
\(\left\{{}\begin{matrix}3^{450}=\left(3^3\right)^{150}=27^{150}\\5^{300}=\left(5^2\right)^{150}=25^{150}\end{matrix}\right.\)
Vì \(27>25\)
Nên \(27^{150}>25^{150}\)
Hay \(3^{450}>5^{300}\)
Vậy ...
Bài 2:
\(A=1+2+2^2+2^3+...+2^{2016}+2^{2017}\)
\(\Leftrightarrow2A=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\)
\(\Leftrightarrow2A-A=2^{2018}-1\)
\(\Leftrightarrow A=2^{2018}-1\)
Vậy \(A=2^{2018}-1\).
Chúc bạn học tốt!
1.
Ta có:
3450 = 33 . 150 = (33)150 = 27150
5300 = 52 . 150 = (52)150 = 25150
Vì 27150 > 25150 nên 3450 > 5300
Vậy...
A = 1 + 2 + 22 + ... + 22017
\(\Rightarrow\) 2A = 2 + 22 + 23 + ... + 22018
\(\Rightarrow\) 2A - A = (2 + 22 + 23 + ... + 22018) - (1 + 2 + 22 + ... + 22017)
\(\Rightarrow\) A = 22018 - 1