1.Một ô tô chạy từ A đến B với vận tốc 65km/h, cùng lúc đó 1 xe máy chạy từ B đến A với vận tốc 40km/h.Biết khoảng cách AB là 540km và M là trung điểm của AB.Hỏi sau khi khổi hành bao nhiêu thì ô tô cách M một khoảng bằng 1/2 khoảng cách từ xe máy đến M
2.Tính:
B = 1 + \(\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{20}\left(1+2+3+...+20\right)\)
3.Độ dài 3 cạnh của tam giác tỉ lệ với 2;3;4.Hỏi 3 chiều cao tương ứng 3 cạnh đó tỉ lệ với số nào?
Bài 1:
Nửa quãng đường AB( hay M cách A, B) dài là:
540:2=270(km)
Gọi quãng đường ô tô và xe máy đã đi lần lượt là S1; S2 (km) và t (giờ) là thời gian cần tìm.
Trong cùng 1 thời gian đi thì quãng đường tỉ lệ thuận với vận tốc.
\(\Rightarrow\frac{S_1}{65}=\frac{S_2}{40}=t\)
Ta có:
\(S_1=\frac{1}{2}\cdot S_2\)
\(\Rightarrow t=\frac{270-a}{65}=\frac{540-2a}{130}=\frac{270-2a}{40}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(t=\frac{540-2a}{130}=\frac{270-2a}{40}=\frac{\left(540-2a\right)-\left(270-2a\right)}{130-40}=\frac{270}{90}=3\)
Vậy sau khi khởi hành 3 giờ thì ô tô cách M 1 khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M.