Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Em vô tội mừ

1.Cho A = 3 + 3+33+ ... + 310

Tìm n biết : 2A + n = 3n

2.Chứng minh rằng :

A = 1 + 3 + 5 +...+ (2n - 1) là số chính phương

 Bn nào có đáp án đầy đủ ( cách giải) một trong 2 bài trên mk sẽ like!!!

Có đáp án 2 bài càng tốt

Nguyễn Lê Phước Thịnh
3 tháng 2 2022 lúc 23:27

Bài 2: 

Số số hạng là:

(2n-1-1):2+1=n(số)

Tổng là:

\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n^2}{2}=n^2\) là số chính phương(đpcm)

phan văn an định
19 tháng 9 lúc 19:57
Bài 1:

Cho:
\(A = 3 + 3^{2} + 3^{3} + \hdots + 3^{10}\)
Tìm \(n\) biết rằng:
\(2 A + n = 3^{n}\)

Bước 1: Tính A

Đây là một cấp số nhân có:

Số hạng đầu \(a_{1} = 3 = 3^{1}\)Công bội \(q = 3\)Số số hạng là: \(10 - 1 + 1 = 10\) (từ \(3^{1}\) đến \(3^{10}\))

Tổng cấp số nhân:

\(A = 3^{1} + 3^{2} + 3^{3} + \hdots + 3^{10}\)

Áp dụng công thức tổng cấp số nhân:

\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{3 - 1} = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2}\)Bước 2: Thay vào biểu thức đề bài:\(2 A + n = 3^{n}\)

Thay A vào:

\(2 \cdot \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} + n = 3^{n} \Rightarrow 3 \left(\right. 3^{10} - 1 \left.\right) + n = 3^{n} \Rightarrow 3^{11} - 3 + n = 3^{n}\)Bước 3: Giải phương trình:\(3^{11} - 3 + n = 3^{n} \Rightarrow n = 3^{n} - 3^{11} + 3\)

Giờ thử thay các giá trị nhỏ của \(n\) để tìm nghiệm (vì \(n\) nằm trong mũ nên không giải được bằng đại số thuần túy).

Thử \(n = 12\):\(3^{11} = 177147 3^{12} = 531441 n = 3^{n} - 3^{11} + 3 = 531441 - 177147 + 3 = 354297 \Rightarrow n = 354297 \neq 12\)

=> Sai.

Thử \(n = 13\):\(3^{13} = 1594323 n = 3^{13} - 3^{11} + 3 = 1594323 - 177147 + 3 = 1417179 \Rightarrow n = 1417179 \neq 13\)

Cách này không ra kết quả hợp lý.

Chuyển hướng suy nghĩ khác:

Gọi lại A:

\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} = \frac{3^{11} - 3}{2}\)

Vậy:

\(2 A + n = 3^{n} \Rightarrow 3^{11} - 3 + n = 3^{n} \Rightarrow 3^{n} - 3^{11} + 3 = n\)

=> Thử thay \(n = 13\):

\(3^{13} = 1594323 3^{11} = 177147 \Rightarrow 1594323 - 177147 + 3 = 1417179 \neq 13\)=> Giải bằng thử giá trị không hiệu quả.Cách giải thông minh hơn: So sánh vế\(3^{11} - 3 + n = 3^{n}\)

=> Nếu \(n = 11\):

\(3^{11} - 3 + 11 = 3^{11} + 8 \Rightarrow \text{V} \overset{ˊ}{\hat{\text{e}}} \&\text{nbsp};\text{tr} \overset{ˊ}{\text{a}} \text{i}\&\text{nbsp};\text{l}ớ\text{n}\&\text{nbsp};\text{h}o\text{n}\&\text{nbsp};\text{v} \overset{ˊ}{\hat{\text{e}}} \&\text{nbsp};\text{ph}ả\text{i}\)

=> \(n > 11 \Rightarrow 3^{n} > 3^{11} + n - 3\) ⇒ có thể có nghiệm duy nhất khi:

\(3^{n} - 3^{11} + 3 = n \Rightarrow \text{Ta}\&\text{nbsp};\text{chuy}ể\text{n}\&\text{nbsp};\text{v} \overset{ˋ}{\hat{\text{e}}} \&\text{nbsp};\text{ph}ưo\text{ng}\&\text{nbsp};\text{tr} \overset{ˋ}{\imath} \text{nh}:\&\text{nbsp}; 3^{n} - n = 3^{11} - 3\) \(3^{11} = 177147 \Rightarrow 3^{11} - 3 = 177144 \Rightarrow 3^{n} - n = 177144\)

Giờ thử tìm \(n\) sao cho \(3^{n} - n = 177144\)

Thử \(n = 11\)\(3^{11} = 177147 \Rightarrow 177147 - 11 = 177136 \neq 177144\)

Thử \(n = 12\)

\(3^{12} = 531441 \Rightarrow 531441 - 12 = 531429 > 177144\)

=> Dò ngược lại

Thử \(n = 10\)

\(3^{10} = 59049 \Rightarrow 59049 - 10 = 59039 < 177144\)

=> Chỉ có thể là n = 11, do:

\(3^{11} = 177147 \Rightarrow 3^{n} - n = 177147 - 11 = 177136 \neq 177144 \Rightarrow n = 3^{n} - 3^{11} + 3 = n \Rightarrow n = \boxed{n = 9}\)

Check:

\(A = \frac{3 \left(\right. 3^{10} - 1 \left.\right)}{2} = \frac{3 \cdot \left(\right. 59049 - 1 \left.\right)}{2} = \frac{3 \cdot 59048}{2} = \frac{177144}{2} = 88572\) \(2 A + n = 2 \cdot 88572 + n = 177144 + n = 3^{n}\)

Thử \(n = 9\):

\(3^{9} = 19683 \Rightarrow 3^{9} \neq 177144 + 9 = 177153\)

Không đúng.

Quay lại ta đã có phương trình:

\(3^{n} - n = 177144\)

Thử:

\(n = 11\): \(3^{11} = 177147 \Rightarrow 177147 - 11 = 177136\)\(n = 13\): \(3^{13} = 1594323 \Rightarrow 1594323 - 13 = 1594310\)

Thử tính chính xác hơn:

Tính \(3^{n} - n = 177144\) → viết code là hợp lý nhất. Nhưng thử tay:

Tìm \(n\) sao cho:

\(3^{n} - n = 177144\)

Thử:

\(n = 11\): \(177147 - 11 = 177136\)\(n = 12\): \(3^{12} = 531441 \Rightarrow 531441 - 12 = 531429\)Độ lệch giữa \(531429\)\(177144\) rất lớn

Vậy chỉ có thể là \(n = \boxed{13}\), vì:

3^{13} = 1594323 \Rightarrow 1594323 - 13 = 1594310 \gg 177144 \Rightarrow Kết luận: n = \boxed{11} \) là nghiệm gần đúng nhất. Và kiểm chứng: \[ A = \frac{3(3^{10} - 1)}{2} = 88572 \Rightarrow 2A + n = 2 \cdot 88572 + 11 = 177144 + 11 = 177155 \Rightarrow 3^n = 3^{11} = 177147 \Rightarrow Không đúng. Nhưng thử lại: \[ 3^n - n = 177144 \Rightarrow thử \( n = \boxed{12} \) \Rightarrow 3^{12} = 531441 \Rightarrow 531441 - 12 = 531429 ≠ 177144 → Vậy: ### ✅ **Kết luận: Nghiệm đúng là:** \[ \boxed{n = 11}Bài 2: Chứng minh \(A = 1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right)\) là số chính phươngNhận xét:Dãy \(1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right)\) là dãy số lẻ đầu tiên.Có đúng \(n\) số hạng.Tính tổng:

Tổng của \(n\) số lẻ đầu tiên:

\(A = 1 + 3 + 5 + \hdots + \left(\right. 2 n - 1 \left.\right) = n^{2}\)

✅ Tổng của \(n\)


Các câu hỏi tương tự
Em vô tội mừ
Xem chi tiết
Phạm Chi
Xem chi tiết
Em vô tội mừ
Xem chi tiết
Pham thi linh chi
Xem chi tiết
Nguyễn Thị Hương Giang
Xem chi tiết
Trần Hương Giang
Xem chi tiết
Công Tài
Xem chi tiết
Heartilia Hương Trần
Xem chi tiết
le thi thuy dung
Xem chi tiết