Bài 1: Liên hệ giữa thứ tự và phép cộng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhung Bùi

1/a+2b+c + 1/b+2c+a + 1/c+2a+b nhỏ hơn hoặc bằng 1/a+3b + 1/b+3c + 1/c+3a

Trần Thị Hồng Ngát
20 tháng 3 2018 lúc 21:51

\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}< =\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)

\(\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}< =\dfrac{4}{2a+4b+2c}=\dfrac{2}{a+2b+c}\)

Cm tương tự, ta có:

\(\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}< =\dfrac{2}{b+2c+a}\)\(\)

\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}< =\dfrac{2}{c+2a+b}\)

Cộng 2 vế của 3 BĐT với nhau, ta có:

\(\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}+\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}+\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}< =\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}+\dfrac{2}{c+2a+b}\)

\(\Leftrightarrow\left(\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}+\dfrac{1}{a+2b+c}\right)+\left(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\right)< =\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}+\dfrac{2}{c+2a+b}\)

\(\Leftrightarrow\dfrac{-\left(c+2a+b\right)\cdot\left(a+2b+c\right)-\left(b+2c+a\right)\left(a+2b+c\right)-\left(b+2c+a\right)\left(c+2a+b\right)}{\left(b+2c+a\right)\cdot\left(c+2a+b\right)\cdot\left(a+2b+c\right)}+\dfrac{\left(b+3c\right)\left(c+3a\right)+\left(a+3b\right)\left(c+3a\right)+\left(a+3b\right)\left(b+3c\right)}{\left(a+3b\right)\left(b+3c\right)\left(c+3a\right)}\le0\)


Các câu hỏi tương tự
Nhung Bùi
Xem chi tiết
Dan Nguyen
Xem chi tiết
I LOVE YOU SO MUCH
Xem chi tiết
Nguyễn Ngọc Trình
Xem chi tiết
Ender Ice VN
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phương Thùy Lê
Xem chi tiết
hỏa quyền ACE
Xem chi tiết