a) \(\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)
\(=\dfrac{16+x}{x^2-2x}-\dfrac{18}{x^2-2x}\)
\(=\dfrac{16+x-18}{x^2-2x}\)
\(=\dfrac{x-2}{x\left(x-2\right)}\)
\(=\dfrac{1}{x}\)
a) \(\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)
\(=\dfrac{16+x}{x^2-2x}-\dfrac{18}{x^2-2x}\)
\(=\dfrac{16+x-18}{x^2-2x}\)
\(=\dfrac{x-2}{x\left(x-2\right)}\)
\(=\dfrac{1}{x}\)
áp dụng quy tắc đổi dấu để các phân thức sau có cùng mẫu rồi thực hiện phép tính :
a)\(\dfrac{16+x}{x^2-2x}+\dfrac{18}{2x-x^2}\)
b)\(\dfrac{2y}{2x^2-xy}+\dfrac{4x}{xy-2x^2}\)
c)\(\dfrac{4-x^2}{x-3}+\dfrac{2x-2x^2}{3-x}+\dfrac{5-4x}{x-3}\)
1) thực hiện các phép tính sau
a) 3x - 5/ 7+ 4x+ 5/7
b) 5xy - 4x/2x^2y^3 + 3xy+ 4y/2x^2y^3
c) x+1/X-5+x-18/x-5+x+2/x-5
2)
a) 2/x+3 + 1/x
b) x+1/2x-2+(-2x)/x^2-1
c) y - 12/6y- 36+ 6/ y^2- 6y
d) 6y/x+3x+3/2x+6
B=[ x+1/2x-2+3/x2-1-x+3/2x+2]×4x2-4/5
x2-36/2x+10×3/6-x
5x+10/4x-8×4-2x/x+2
11-4x2/x2+4x:2-4x/3x
(1/x2+x-2-x/x+1)÷(1/x+x-2)
Cộng các phân thức khác mẫu thức :
a) \(\dfrac{5}{6x^2y}+\dfrac{7}{12xy^2}+\dfrac{11}{18xy}\)
b) \(\dfrac{4x+2}{15x^3y}+\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
c) \(\dfrac{3}{2x}+\dfrac{3x-3}{2x-1}+\dfrac{2x^2+1}{4x^2-2x}\)
d) \(\dfrac{x^3+2x}{x^3+1}+\dfrac{2x}{x^2-x+1}+\dfrac{1}{x+1}\)
tính: ( x^2 + x +1)/ ( 2x^3 + 4x^2+2x)+ ( x^2 -x+1)/( 2x^3-2x)+ 1/ ( 1+ x-x^2-X^3)
Bài 1:tính
a)\(\dfrac{x^2-2^{ }}{x\left(x-1\right)^2}+\dfrac{2-x}{x\left(1-x\right)^2}\)
b)\(\dfrac{3}{2x}+\dfrac{3x-3}{2x-1}+\dfrac{2x^2+1}{4x^2-2x}\)
c)\(\dfrac{x}{x-1}+\dfrac{2}{x^2+x+1}+\dfrac{4x^2-1}{1-x^3}\)
\(\dfrac{2x^2+4x}{x^3-4x}+\dfrac{x^2-4}{x^2+2x}+\dfrac{2}{2-x}\)
Thực hiện phép tính :
a) x+1/x - x2 + x+2/2 - 4x + 2x2
b) x/x3-1 + x+1/x2- x + x-1/x2+x+1.
c) x3-2x2-x+2/x3+x2-4x-4 + x3-5x+4/x3+2x2-3x-4
*Cộng các phân thức sau: a) x^2/x+1 + 2x/x^2-1 + 1/1+x+1 b) 2x+y/2x^2-y + 8y/y^2-4x^2+2x-y/2x^2+xy c) 1/x-y +3xy/y^3-x^3 + x-y/x^2+xy+y^2