a: góc BMH=góc BCA(hai góc đồng vị, MH//AC)
góc HBM=góc KMC(hai góc đồng vị, MK//AB)
b: Xét tứ giác AHMK có góc AHM=góc AKM=góc KAH=90 độ
nên AHMK là hình chữ nhật
Suy ra: góc HMK=90 độ
a: góc BMH=góc BCA(hai góc đồng vị, MH//AC)
góc HBM=góc KMC(hai góc đồng vị, MK//AB)
b: Xét tứ giác AHMK có góc AHM=góc AKM=góc KAH=90 độ
nên AHMK là hình chữ nhật
Suy ra: góc HMK=90 độ
cho tam giác ABC có AB=AC vẽ Ah vuông góc với BC ( H thuộc BC ) bt số đo góc BAC là 50 độ. a) chứng minh tam giác ABH=ACH. b) tính số đo góc BAH?. c) Gọi K là hình chiếu của điểm C trên cạnh AB. hãy so sánh 2 góc KAH và KCH
Cho Tam giác ABC vuông tại A , có AB=3 cm , BC= 5cm . Trên cạnh BC lấy điểm D sao cho BD= 3cm . Đường thẳng vuông góc với BC tại D cắt cạnh AC tại M , cắt tia BA tại N
a)Tính AC và so sánh các góc của tam giác ABC
b) Chứng minh MA=MD và tam giác MNC cân
c) Gọi I là trung điểm của CN . Chứng minh 3 điểm B,M,I thẳng hàng
cho tam giác ABC vuông tại A . tia phân giác góc B cắt cạnh AC tại D trên cạnh BC lấy điểm E sao cho BE = AB . chứng minh : Bc vuông góc với DE
Cho tam giác ABC có góc A bằng 90 độ góc b bằng 50 độ Kẻ AH vuông góc với BC ( H thuộc BC ) kẻ HD vuông góc với AC (E thuộc AC).Tính góc ACB(có thể ko dùng nhũng thứ đề bài cho.)
Bài 4 (2đ): Cho tam giác ABC có góc A = 900. Trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC tại M.
a/ Chứng minh ΔABM = ΔEBM.
b/ So sánh AM và EM.
c/ Tính số đo góc BEM.
. Cho rABC vuông tại A có AB = AC. Gọi M là trung điểm của BC, trên đoạn CM lấy bất kì điểm E. Kẻ BH và CK vuông góc với AE tại H và K.
a) Tính số đo góc B và góc C
Cho tam giác ABC,A=90 độ,kẻ AH vuông góc với BC,vẽ tia phân giác của BAH và C cắt tại K.chứng minh:AK vuông góc CK
Cho Tam giác ABC vuông tại A.Có b=30o,M là trung điểm của BC.Trên tia đối của tia MA,lấy D sao cho MA=MD
a)Tính số đo góc C
b)Chứng minh tam giác MAB=MDC
c)Chứng minh AB//CD và AC vuông góc với CD
d)Chứng minh BC=2AM
cho △ABC vuông tại A biết cạnh BC=10cm, cạnh AB=6cm.Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BD tại D
a) tính độ dài cạnh AC
b)chứng minh △ABE= △DBE
c)Kẻ AH vuông góc BC ( H ϵ BC). Chứng minh AD là tia phân gác của HAC.