\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}=\dfrac{1998}{2000}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1998}{2000}\)
\(\Leftrightarrow2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1998}{2000}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{3996}{2000}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{3996}{2000}\)\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2000}\)
\(\Rightarrow x+1=2000\Rightarrow x=1999\)