\(\dfrac{1}{2}\)log(x2 + x - 5)=log(5x)+log(\(\dfrac{1}{5x}\))
⇔\(\sqrt{x^2+x-5}\) = 5x.\(\dfrac{1}{5x}\)
⇔x2 + x - 5=1 ⇔ \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Kết hợp với ĐKXĐ của hàm nên chỉ có x=2 thoả mãn yêu cầu bài tập
\(\dfrac{1}{2}\)log(x2 + x - 5)=log(5x)+log(\(\dfrac{1}{5x}\))
⇔\(\sqrt{x^2+x-5}\) = 5x.\(\dfrac{1}{5x}\)
⇔x2 + x - 5=1 ⇔ \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Kết hợp với ĐKXĐ của hàm nên chỉ có x=2 thoả mãn yêu cầu bài tập
Đặt t=log3(x) thì bất pt log^25(5x)-3log√5(x)-5<0 trở thành.....log mũ 2 5 của 5x ạ
1, \(log_{5x}\dfrac{5}{x}+log^{2_{ }}_5x=1\)
2, \(log_5\left(5^x-1\right).log_{25}\left(5^{x+1}-5\right)=1\)
3, \(2\left(log_3x^{ }\right)^2=log_3x.log_3\left(\sqrt{2x+1}-1\right)\)
- giải hộ 3 phương trình trên với
GPT: \(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)=2\)
a)log2x+1(3-x2)=2
b)log2(5-2x)=2-x
c)log2(x+1)=4-3x
Lg2x - logx.log2(4x)+2log2x=0 . Tổng nghiệm là bao nhiêu
Log2(x+1) +log\(\dfrac{1}{2}\) \(\sqrt{x+1}\) =1
có nghiệm
log2x.log23=log2(x2-1)
Log2(x2-4) + x= log2(8(x+2))
log x + log(20-x)=2 có nghiệm