\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{1317\cdot1318}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{1317}+\dfrac{1}{1317}-\dfrac{1}{1318}\)
\(=1-\dfrac{1}{1318}\)
\(=\dfrac{1318}{1318}-\dfrac{1}{1318}\)
\(=\dfrac{1317}{1318}\)