a, ta có A.5 = 5 ( 1+5 +52 +...........+549 +550)
5A = 5 +52 +53 +............... + 550 +551
5A-A = (5 +52 +53 +............+ 551) - (1+5+52 +......+550)
4A = 551 -1
A =\(\dfrac{5^{51}-1}{4}\)
vậy A =
b, B= \(\dfrac{4^5.9^4-2.6^9}{2^{10}.3+6^8.20}\)
= \(\dfrac{\left(2^2\right)^5.\left(3^3\right)^4-2.6^9}{2^{10}.3+6^8.20}\)
=\(\dfrac{2^{10}.3^{12}-2.6^9}{2^{10}.3+6^8.20}\)
= \(\dfrac{3^{11}-6}{10}\)
\(A=1+5+5^2+5^3+5^4+...+5^{49}+5^{50}\)
\(\Rightarrow5A=5\left(1+5+5^2+5^3+5^4+...+5^{49}+5^{50}\right)\)
\(\Rightarrow5A=5+5^2+5^3+5^4+5^5+...+5^{50}+5^{51}\)
\(\Rightarrow5A-A=\left(5+5^2+5^3+5^4+5^5+...+5^{50}+5^{51}\right)-\left(1+5+5^2+5^3+5^4+...+5^{49}+5^{50}\right)\)\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\dfrac{5^{51}-1}{4}\)