Gọi tổng trên là S
\(S=100^2-99^2-98^2-....-1=100^2-\left(100-1\right)^2-\left(100-2\right)^2-.....-\left(100-99\right)^2=100^2-100^2-100^2-.....-100^2+2.100+2.2.100+2.3.100+.....+2.99.100-1^2-2^2-3^2-....-99^2-100^2+100^2\)
\(A=1^2+2^2+99^2+100^2\)
=1.(2-1)+2.(3-1)+3.(4-1)+....+99.(100-1)+100.(101-1)
=1.2-1.1+2.3-1.2+3.4-1.3+...+99.100-1.99+100.101-1.100
=(1.2+2.3+3.4+...+99.100+100.101)-(1+2+3+...+100)
= [1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99) ] /3 + [(100+1).100 /2]
=[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+100.101.102-99.10.101]/3 + 5050
=100.101.102/3 + 5050
=348450
\(\Rightarrow S=-99.100^2+2.100.99.100-A=641550\)