Cho tam giác ABC, trên cạnh AB lấy điểm M sao cho AM=1313AB, trên cạnh AC lấy điểm N sao cho AN=1313AC. Gọi O là giao điểm của BN và CM
a) CM: diện tích tam giác BOC = 2 lần diện tích tam giác BOA
b)Từ diểm C và B hạ BD vuông góc OA. CM:BD=CE
c)Giả sử diện tích tam giác ABC= a (đơn vị diện tích). Tính diện tích AMON
Cho tam giác ABC vuông tại A (AB nhỏ hơn AC ) đường cao AH. Gọi M là t/điểm AB. D là điểm đ/xứng với H qua M.
a) C/m: tứ giác AHBD là hcn
b) Gọi E là điểm đ/xứng với B qua điểm H. C/m: ADHE là hình bình hành
c) Kẻ EF vuông góc AC; HK vuông góc AC (E, K thuộc AC). C/m: AH=HF
Cho tam giác ABC có AB>AC. Trên cạnh AB lấy điểm M sao cho AM=\(\dfrac{1}{3}\)AB, trên AC lấy điểm N sao cho AN=\(\dfrac{1}{3}\) AC. Gọi O là giao điểm của BM và CN, F là giao điểm của AO và BC, vẽ AI \(\perp\)BC tại I, OG \(\perp\) BC tại G, BD \(\perp\) FA tại D, CE \(\perp\) FA tại E. So sánh CA với BD, OG với IA, OA với FO?
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm.
a) Tính đường cao AH.
b) Kẻ HE⊥AB, HF⊥AC (E∈AB, F∈AC). Tính EF.
c) Gọi M,N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình gì? Vì sao? Tính diện tích tứ giác đó.
Cho tam giác ABC cân tại A, đường trúng tuyến AM. Gọi I là trung điểm của AC. K là điểm đối xứng với M qua I. a) CM: tứ giác AMCK là hình chữ nhật b) CM: AB=MK c) Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông. d) Cho AB=AC=5cm; BC=6cm. Tính diện tích tam giác ABC.
cho tam giác ABC góc A = 90 độ,đường cao AH (H thuộc BC) Vẽ HE vuông với AB(E thuộc AB) vẽ HF vuông góc AC ( F thuộc AC) CM a) Tứ giác AEHF là hình chữ nhật . Từ đó suy ra AH=EF b) Tam Giác AEF tam giác ACB c)AE^2 = AF *FC d) Cho AB=15cm,AC=20cm Tính diện tích AEF e) Gọi AD là phân giác góc A Tính CD,BD và diện tích AHD
Cho tam giác ABC vuông tại A có AB=3cm;AC=4cm . Gọi I là trung điểm của BC. Qua M lần lượt kẻ các đường thẳng vuông với AB và AC tại K và H
a) Chứng minh tứ giác AKIH là hình chữ nhật;
b) Lấy điểm D đối xứng vs điểm I qua điểm K. Chứng Minh tứ giác IBDA là hình thoi
Cho tam giác ABC. Trên cạnh Ab, AC lần lượt lấy hai điểm M và N sao cho AM=\(\dfrac{2}{3}\).BM; AN=\(\dfrac{3}{2}\).NC. Gọi O là giảo điểm của BN và CM. Chứng minh: SBOC=2.SAMON.
HELP ME!!!
1. Cho hình chữ nhật ABCD, O là điểm nằm trong hình chữ nhật, AB = a, AD = b. Tính tổng diện tích các tam giác OAB và OCD theo a và b
2. Cho tam giác ABC. Gọi M là trung điểm cạnh AB. Trên cạnh AC, lấy điểm B sao cho AN = 2NC. Gọi I là giao điểm của BN và CM. Chứng minh:
a) SBIC = SAIC
b) BI = 3IN