1) Tính :
a) A = ( \(1-\frac{1}{2}\) ) + ( \(1-\frac{1}{4}\) ) + ( \(1-\frac{1}{8}\) ) + .......+ ( \(1-\frac{1}{512}\) ) + ( \(1-\frac{1}{1024}\) )
b) B = ( \(\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\) ) : \(\frac{1124.2247-1123}{1124+1123.2247}\)
c) C = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+......+\frac{1}{14850}\)
b) Đặt B = A : C ta có:
\(A=\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\)
\(A=5^3.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=5^3.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=5^3.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(A=\frac{5^3.2}{5}\)
\(A=5^2.2\)
\(\Rightarrow A=50\)
\(C=\frac{1124.2247-1123}{1124+1123.2247}\)
\(C=\frac{\left(1123+1\right).2274-1123}{1123.2247+1124}\)
\(C=\frac{1123.2247-2247-1123}{1123.2247+1124}\)
\(C=\frac{1123.2247+1124}{1123.2247+1124}=1\)
\(\Rightarrow B=50:1=50\)
Vậy B = 50