Sửa đề: \(\frac{x-3}{2018}\rightarrow\frac{x-3}{2016}\)
\(\frac{x-1}{2018}+\frac{x-2}{2017}=\frac{x-3}{2016}+\frac{x-4}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}-1+\frac{x-2}{2017}-1=\frac{x-3}{2016}-1+\frac{x-4}{2015}-1\)
\(\Leftrightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}=\frac{x-2019}{2016}+\frac{x-2019}{2015}\)
\(\Leftrightarrow\frac{x-2019}{2018}+\frac{x-2019}{2017}-\frac{x-2019}{2016}-\frac{x-2019}{2015}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-2019=0\) (Vì \(\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)\ne0\) )
\(\Leftrightarrow x=2019\)
Vậy \(S=\left\{2019\right\}\)