a.\(\frac{13}{17}\)=1-\(\frac{4}{17}\); \(\frac{46}{50}\)=1-\(\frac{4}{50}\)
Vì \(\frac{4}{17}\)>\(\frac{4}{50}\)=> 1-\(\frac{4}{17}\)<1-\(\frac{4}{50}\)
Vậy\(\frac{13}{17}\)<\(\frac{46}{50}\)
c.\(\frac{41}{91}\)=1-\(\frac{50}{91}\)=1-\(\frac{500}{910}\); \(\frac{411}{911}\)=1-\(\frac{500}{911}\)
Vì \(\frac{500}{910}\)>\(\frac{500}{911}\)=>1-\(\frac{500}{910}\)<1-\(\frac{500}{911}\)=>\(\frac{41}{91}\)<\(\frac{411}{911}\)
d. \(\frac{2001}{2002}< \frac{2002}{2002}=1;\frac{2005}{2003}>\frac{2003}{2003}=1\text{ hay }\frac{2001}{2002}< 1< \frac{2005}{2003}\)
Vậy \(\frac{2001}{2002}< \frac{2005}{2003}\).
e. \(-\frac{2005}{2010}< 0;\frac{2001}{2002}>0\text{ hay }-\frac{2005}{2010}< 0< \frac{2001}{2002}\)
Vậy \(-\frac{2005}{2010}< \frac{2001}{2002}\).
b. \(\frac{33}{131}>\frac{33}{132}=\frac{1}{4};\frac{53}{217}< \frac{53}{212}=\frac{1}{4}\text{ hay }\frac{53}{217}< \frac{1}{4}< \frac{33}{131}\)
Vậy \(\frac{53}{217}< \frac{33}{131}\).