\(\left(sin\dfrac{x}{2}-cox\dfrac{x}{2}\right)^2+\sqrt{3}cosx=2sin5x+1\)
⇔\(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}-2sin\dfrac{x}{2}cos\dfrac{x}{2}+\sqrt{3}cosx=2sin5x+1\)
⇔\(1-sinx+\sqrt{3}cosx=2sin5x+1\)
⇔\(sin\left(\dfrac{\Pi}{3}-x\right)=sin5x\)
\(2sinx\left(\sqrt{3}cosx+sinx+2sin3x\right)=1\)
⇔\(2\sqrt{3}sinxcosx+2sin^2x+4sinxsin3x=1\)
⇔\(\sqrt{3}sin2x+1-cos2x+cos2x-2cos4x=1\)
⇔\(\sqrt{3}sin2x+cos2x=2cos4x\)
⇔\(cos\left(2x-\dfrac{\Pi}{3}\right)=cos4x\)
\(\left(1+2cosx\right)\left(cosx-\sqrt{3}sinx\right)=1\)
⇔\(cosx+2cos^2x-\sqrt{3}sinx-2\sqrt{3}sinxcosx=1\)
⇔\(cosx-\sqrt{3}sinx+1+cos2x-\sqrt{3}sin2x=1\)
⇔\(cosx-\sqrt{3}sinx=\sqrt{3}sin2x-cos2x\)
⇔\(sin\left(\dfrac{\Pi}{6}-x\right)=sin\left(2x-\dfrac{\Pi}{6}\right)\)